Comune di OFFLAGA Provincia di BRESCIA

STUDIO DELLA COMPONENTE GEOLOGICA, IDROGEOLOGICA E SISMICA DEL PIANO DI GOVERNO DEL TERRITORIO

Legge Regionale 11 marzo 2005, n. 12 D.G.R. 28 maggio 2008, n. 8/7374

RELAZIONE GENERALE

Aprile 2010

dott. Marco Daguati

GEOLOGO

via A. Diaz, 22 – 26845 Codogno (Lo) tel e fax 0377.433021 – portatile 335.6785021 e-mail: marco.daguati@geolambda.it

SOMMARIO

1.	OB	IETTIVI e METODO DI STUDIO	4
2.	INC	QUADRAMENTO GEOLOGICO-STRUTTURALE	6
3.	INC	QUADRAMENTO STRATIGRAFICO	10
4.	CA	RATTERI GEOMORFOLOGICI DEL TERRITORIO COMUNALE	14
2	4.1	Il "Sistema dei terrazzi alluvionali del Mella"	
2	4.2	Il "Livello Fondamentale della Pianura" e le forme ad esso associate	
2	4.3	Forme dovute all'attività antropica	18
5.	INI	DAGINE DI PRIMA CARATTERIZZAZIONE LITOTECNICA E PEDOLOGICA	19
	5.1	Caratterizzazione litologica	19
	5.2	Caratterizzazione pedologica	21
6.	RE	ΓΙCOLATO IDROGRAFICO	23
(6.1	Il Fiume Mella	26
(6.2	Il Bacino del Mella: i dati idrologici disponibili	28
(6.3	Dati disponibili su derivazioni e scarichi	32
(6.4	Stima delle portate medie antropizzate	34
(6.5	Gli eventi di piena del Mella	39
7.	IDR	ROGEOLOGIA	43
•	7.1	Caratteristiche idrogeologiche generali	43
•	7.2	Caratteristiche idrogeologiche del territorio comunale	46
•	7.3	Censimento e catalogazione dei pozzi	49
•	7.4	Indagine piezometrica	49
	7.5	Vulnerabilità degli acquiferi	
8.	PEF	RICOLOSITA' SISMICA LOCALE	55
8	8.1	Zonazione sismica nazionale ed inquadramento del territorio di Offlaga	55
8	8.2	Descrizione della sismicità	60
8	8.2	Pericolosità sismica	
	8.3	Valutazione degli effetti sismici di sito: analisi sismica di secondo livello	
9.	CA	RTA DI SINTESI	83
10.	. CA	RTA DEI VINCOLI GEOLOGICI	85
11.	. Alle	egato 1 - TRINCEE ESPLORATIVE	87
12.	. Alle	egato 2 - ELENCO DEI POZZI CENSITI SUL TERRITORIO COMUNALE	91
13.	. Alle	egato 3 - STRATIGRAFIE DEI POZZI ACQUEDOTTISTICI PRESENTI S	SUL
		RRITORIO COMUNALE	
			/ /

TAVOLE ALLEGATE

- Tavola 1:	Carta geologica e geomorfologica
- Tavola 2:	Carta pedologica e di prima caratterizzazione litotecnica
- Tavola 3:	Carta del reticolato idrografico
- Tavola 4:	Carta idrogeologica
	~ · · · · · · · · · · · · · · · · · · ·

- Tavola 5: Sezioni litostratigrafiche interpretative
- Tavola 6: Carta della pericolosità sismica locale
- Tavola 7: Carta di sintesi
- Tavola 8: Carta dei vincoli geologici
- Tavola 9: Carta della Fattibilità Geologica per le Azioni di Piano

1. OBIETTIVI e METODO DI STUDIO

Nella stesura del proprio Piano di Governo del Territorio, il Comune di Offlaga ha affidato allo scrivente l'incarico di redigere lo studio geologico, idrogeologico e sismico ai sensi dell'art. 57 della L.R. 12/05 e della D.G.R. n. 8/7374/2008.

Lo studio, sviluppato in sintonia con quanto disposto dalla normativa regionale, risulta "adattato" alle esigenze e peculiarità del territorio comunale di Offlaga: sin dall'inizio, infatti, gli sforzi e le attenzioni sono state concentrate sulle problematiche salienti di questo lembo di pianura, quali l'assetto morfologico, idraulico e idrogeologico, la vulnerabilità degli acquiferi, la caratterizzazione litotecnica dei depositi naturali, nonché la tutela e la salvaguardia delle emergenze naturali.

Secondo quanto previsto dalla disciplina regionale, lo studio è stato articolato in tre fasi:

- <u>La prima fase (o fase di analisi)</u> si è concretizzata con la raccolta dei dati bibliografici e delle informazioni territoriali necessarie alla definizione delle principali caratteristiche geologiche, litologiche, geomorfologiche, sismiche, idrogeologiche ed idrografiche del territorio.

Durante la fase di analisi è stata prodotta la cartografia di base e di inquadramento (scala 1:10.000) costituita dalla Carta geologica e geomorfologica (Tavola 1), dalla Carta pedologica e di prima caratterizzazione litotecnica (Tavola 2), dalla Carta del Reticolato Idrografico (Tavola 3) e dalla Carta Idrogeologica (Tavola 4). La lettura integrata delle informazioni relative alle tavole di analisi presentate in allegato consente una comprensione in chiave interpretativa dei fenomeni morfogenetici e sedimentari che hanno dato vita al lembo di pianura occupato dal Comune di Offlaga.

In questa fase è stata analizzata anche la sismicità del territorio e prodotta, quale elaborato sintetico, la Carta della pericolosità sismica locale (Tavola 6).

Parte della fase di analisi è stata dedicata alla ricerca di informazioni litostratigrafiche, indispensabili per descrivere le geometrie dei corpi idrici sotterranei. I risultati dell'operazione di correlazione ed interpretazione dei dati stratigrafici sono rappresentati nelle sezioni della Tavola 5.

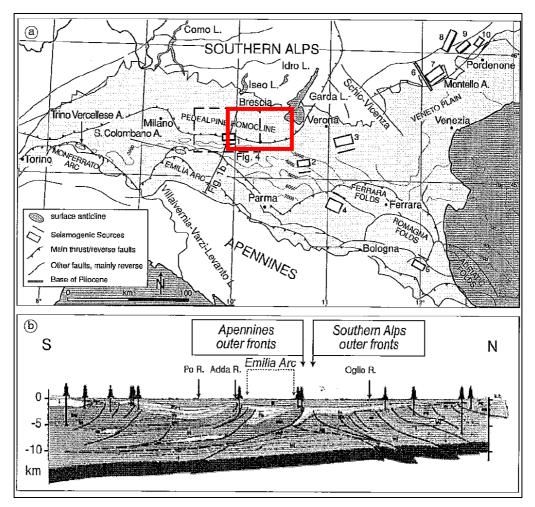
- Durante <u>la seconda fase</u> sono stati interpretati e correlati i dati raccolti in precedenza con l'obiettivo di formulare proposte attraverso una lettura del territorio in chiave sia geologico-ambientale, sia delle vocazioni d'uso. A tale scopo è stata prodotta la Carta di Sintesi (Tavola 7) e la Carta dei Vincoli Geologici (Tavola 8) (entrambe alla scala 1:10.000), nelle quali vengono evidenziati gli aspetti più significativi emersi dalla fase di analisi e gli elementi normativi vincolanti sotto il profilo geologico. Lo scopo della cartografia è stato quello di definire le limitazioni d'uso e proporre una zonazione del territorio in funzione dello stato di pericolosità geologica e geotecnica e della vulnerabilità idraulica e idrogeologica.
- Quale strumento finale vengono proposte le Norme Geologiche di Attuazione e la Carta di Fattibilità Geologica delle Azioni di Piano (Tavola 9), alla quale viene allegata una tabella riassuntiva degli elementi limitanti per ciascuna classe di fattibilità. L'elaborato, prodotto alla scala 1:5.000, è stato redatto su carta derivata da rilievo aerofotogrammetrico.

L'intero studio, infine, viene illustrato dal presente rapporto finale nel quale, oltre a descrivere il metodo seguito, è stato dato spazio al commento dei diversi elaborati prodotti, motivando la classificazione proposta.

2. INQUADRAMENTO GEOLOGICO-STRUTTURALE

Il territorio in questione si inserisce nelle ampie strutture regionali della pianura: nel raggio di alcuni chilometri affiorano solo depositi continentali di origine fluviale e fluvio-glaciale che, in questa zona, sono caratterizzati da condizioni di giacitura decisamente uniformi.

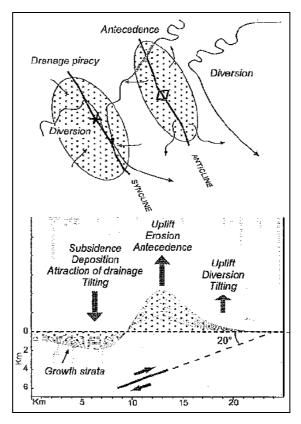
Al di sotto dei depositi continentali affioranti nell'ambito di indagine (che presentano spessori di diverse centinaia di metri), si sviluppa un basamento di origine marina per il quale le prospezioni geofisiche, eseguite nei decenni scorsi a scopo di ricerca petrolifera, hanno permesso di rilevare una situazione strutturale complessa e non priva di significato neotettonico.


Lo sviluppo geologico di questo lembo di Pianura Padana, infatti, è strettamente legato all'evoluzione della catena alpina e a quella appenninica in una fase tardiva della loro storia tettogenetica e rappresenta il risultato del riempimento cominciato nel Pliocene, dapprima marino e poi continentale, dei bacini ampiamente subsidenti delle avanfosse padane: il materasso alluvionale è il risultato della fase di riempimento dei bacini di piggy-back, ospitati sui thrust embriciati che costituiscono la struttura del substrato sepolto.

In linea generale, l'evoluzione geologica della Pianura Padana deriva dalla convergenza della placca Africana e di quella Europea; il bacino sedimentario corrispondente alla Pianura Padana si colloca nell'estremità settentrionale della microplacca Adria (un promontorio della zolla africana). Sin dal tardo Cretacico, la Pianura Padana ha rappresentato la parte frontale di due catene di opposta vergenza: l'Appennino settentrionale (N-vergente) e le Alpi meridionali (S-vergenti). Lo scontro tra le due catene ha strutturato la serie di bacini di piggy-back sopra menzionati, ospitati sul fronte della placca Adria, dove una potente successione sinorogenetica è andata progressivamente depositandosi.

Studi sulla base della sequenza plio-quaternaria nella porzione centrale e meridionale della Pianura Padana (Pieri e Groppi, 1981) mostrano lo sviluppo di tre grandi archi costituiti da thrust ciechi N-vergenti che costituiscono il fronte più avanzato della struttura appenninica settentrionale: l'Arco del Monferrato (Elter e Pertusati, 1973), l'Arco Emiliano e l'Arco Ferrarese-Romagnolo.

Nella porzione settentrionale della pianura, invece, il fronte esterno della catena Sud-Alpina si presenta con una serie di thrust embriciati sviluppati nella monoclinale pede-alpina, immergente verso S.


In tale contesto, il Comune di Offlaga si sviluppa sul fronte meridionale della struttura pedealpina, a N di un pronunciato sistema compressivo (struttura anticlinalica) modellato nel substrato pre-quaternario sepolto, il cui asse (con direzione circa E-W) passa in corrispondenza dell'abitato di Manerbio.

Schema tettonico del substrato della Pianura Padana ("Pieri and Groppi, 1981" in "Burrato et al.", 2003)

Sebbene la definitiva strutturazione del substrato sepolto venga tradizionalmente associata a una fase tettonica pliocenica media-inferiore (databile dalla discordanza esistente tra i sedimenti plio-pleistocenici marini ed il substrato più antico), è opinione sempre più diffusa che i depositi alluvionali quaternari siano stati coinvolti in fasi neotettoniche, condizionando così anche la morfogenesi più recente (Braga et al., 1976; Pieri e Groppi, 1981; Burrato et. al., 2003).

A sostegno di questo fatto, molti Autori indicano sia gli affioramenti di sedimenti prewürmiani che emergono sul "Livello Fondamentale della Pianura" in prossimità degli assi di alcune strutture positive del substrato, sia alcune "anomalie" che si manifestano in taluni tratti dei principali corsi d'acqua. In tale contesto è sicuramente sintomatica la brusca variazione da circa N-S a ENE-WSW assunta dalla direzione media del Mella a S di Offlaga, in corrispondenza della struttura anticlinalica modellata nei depositi pre-quaternari sepolti: il fenomeno è un didattico esempio di condizionamento morfologico secondo il meccanismo della "diversione" fluviale.

Meccanismi di condizionamento tettonico della rete idrografica (Burrato et al., 2003)

A scala locale non si esclude che gli stessi ripiani terrazzati olocenici del Mella siano il parziale prodotto di un progressivo ringiovanimento del territorio: letto in quest'ottica, il corso d'acqua potrebbero essersi progressivamente "incassato" nei depositi pleistocenici a seguito di successivi innalzamenti del substrato sotto spinte tettoniche recenti.

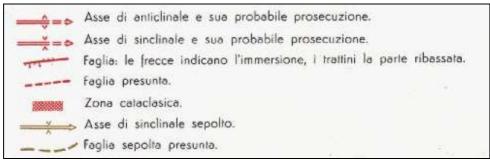
Nonostante ciò, non si rilevano concrete situazioni di rischio derivanti da sismi di superficie; l'ambito comunale, infatti, risulta classificato, secondo la recente normativa (Ordinanza del Pres. Cons. Ministri n. 3274 del 20.03.2003), come zona 3. A tal proposito va considerato come anche nelle aree sismicamente più attive della penisola italiana, i tempi di ritorno per i grandi terremoti siano superiori a 1000 anni, mentre l'attuale catalogo storico dei terremoti

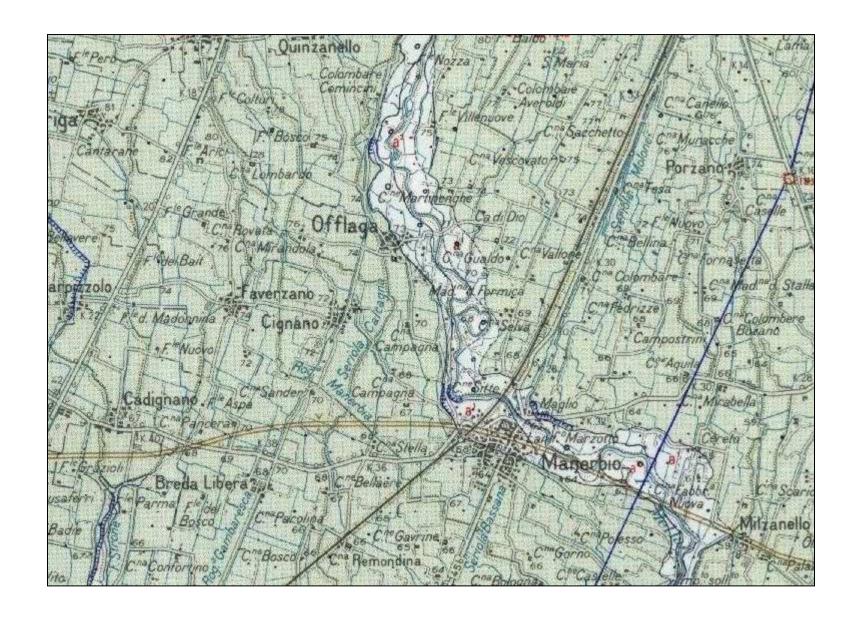
(considerato completo per eventi di magnitudo superiore a 5.5 solo dopo il 17° secolo) potrebbe non coprire adeguatamente il ciclo sismico della maggior parte delle aree sismogenetiche padane. Tuttavia, il confronto tra le deformazioni verticali a lungo termine (a partire dal Pleistocene superiore) e quelle a breve termine, calcolato utilizzando correlazioni geomorfologiche e misure geodetiche (De Martini et al. 1998), dimostra come per molti dei thrust attivi una buona parte dell'energia venga rilasciata in modo asismico: tale fattore giustificherebbe comunque l'attività neotettonica e il condizionamento della sedimentazione e dei lineamenti morfologici di superficie (Burrato et al., 2003), pur riducendo il rischio sismico a cui è esposta la Pianura Padana.

3. INQUADRAMENTO STRATIGRAFICO

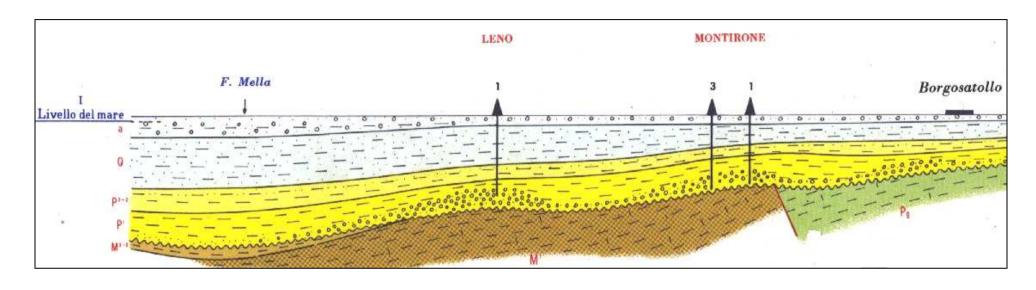
Come evidenziato dalla cartografia geologica ufficiale (Carta Geologica della Lombardia scala 1:250.000 e Carta Geologica d'Italia alla scala 1:100.000), tutte le unità affioranti in un intorno significativo dell'area di analisi sono di origine continentale.

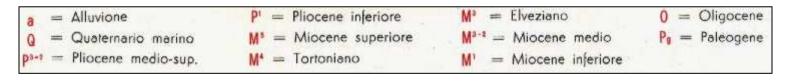

Tali unità, caratteristiche di ambienti deposizionali fluviali e di età compresa tra il Pleistocene medio e l'Olocene, sono:


- Alluvioni medio-recenti (Olocene medio-superiore) si tratta delle alluvioni affioranti con continuità in fasce più o meno ampie lungo le sponde del fiume Mella e sono costituite da depositi di granulometria variabile tra la ghiaia e l'argilla. Sono depositi talora terrazzati, fissati e coltivati, di poco sospesi sull'alveo inciso del fiume.
- Alluvioni antiche (Olocene inferiore) sono i depositi presenti in modo discontinuo ai margini della valle del Mella. Le alluvioni antiche sono poste in posizione intermedia tra il Livello Fondamentale della Pianura e la piana alluvionale e, unitamente alle alluvioni mediorecenti, costituiscono l'intervallo cronostratigrafico olocenico affiorante nel territorio comunale.
- Fluviale Wurm (Pleistocene superiore) è costituito da depositi sabbiosi, limosi ed argillosi con lenti ghiaiose a ciottoli minuti; presentano un suolo bruno o brunastro, talora rossastro, per dilavamento di paleosuoli preesistenti a monte. I depositi costituiscono il substrato del Livello Fondamentale della Pianura (o Piano Generale Terrazzato) sviluppato a valle della linea delle risorgive.


CARTA GEOLOGICA

Estratta da Carta Geologica d'Italia, Foglio n. 47 "Brescia"


LEGENDA



SEZIONE GEOLOGICA DI RIFERIMENTO

4. CARATTERI GEOMORFOLOGICI DEL TERRITORIO COMUNALE

La carta geomorfologica di Tavola 1 costituisce il primo elaborato della fase di analisi ed è stata redatta adottando come base di lavoro i criteri geomorfologici ad indirizzo applicativo proposti dal Gruppo Nazionale Geografia Fisica e Geomorfologia. Con la simbologia sono stati rappresentati sia le forme e i depositi più significativi, distinti in base all'agente morfogenetico che li ha generati, sia il loro stato di attività.

L'analisi territoriale ha grande rilevanza per la valutazione dei fenomeni caratterizzanti un'area di pianura, in quanto gli elementi geomorfologici costituiscono la testimonianza diretta dell'evoluzione che ha interessato la zona nell'ultimo periodo geologico.

In questo contesto e date le finalità applicative della cartografia da produrre, invece, gli elementi geologico-strutturali sono stati considerati unicamente come base su cui si sono modellate le forme superficiali.

Il territorio di Offlaga si sviluppa nella media pianura bresciana, è interamente compreso fra le quote di 80 e 58 m s.l.m. (quote dedotte dalla C.T.R.) e si presenta con una serie di ripiani sub-pianeggianti fra loro altimetricamente sfalsati: la continuità morfologica del Comune di Offlaga, infatti, è interrotta dalle scarpate che, con direzione media NNW-SSE, terrazzano i depositi tardo pleistocenici sull'incisione olocenica del fiume Mella.

Nel complesso, il risultato è quello di una serie di terrazzi morfologici a forma di ripiani sovrapposti, di altezza variabile, dovuti ad una successione spazio-temporale di episodi di alterna erosione e sedimentazione ad opera del Mella.

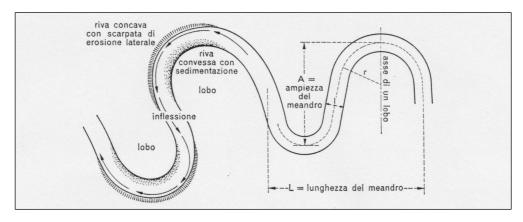
Durante la fase di rilevamento e di stesura della cartografia sono stati distinti i seguenti sistemi morfologici (dal più basso e più recente):

- il "Sistema dei terrazzi alluvionali inclusi nella fascia di meandreggiamento del Mella";
- 2. il "Livello Fondamentale della Pianura".

4.1 Il "Sistema dei terrazzi alluvionali del Mella"

All'interno di questo sistema morfologico si distinguono:

- L'alveo attivo del fiume Mella e le forme in evoluzione ad essi associate (depositi di fondo, sponde ecc.).
- Un sistema di terrazzi (articolati a quote differenti e fra loro sfalsati lungo scarpate morfologiche) che, a partire dal più basso e recente sino al più antico, sono formati da:
 - ➤ una superficie modellata nei depositi medio-recenti, ancora parzialmente interessata da fenomeni erosivi e deposizionali in occasione delle piene principali del Mella (nella fascia adiacente al corso d'acqua), localmente protetta da rilevati arginali;
 - ➤ un ripiano modellato nei depositi antichi post-glaciali più antichi del Mella e successivamente terrazzato per incisione dello stesso corso d'acqua;
 - ➤ uno stretto ripiano presente in modo discontinuo al margine esterno della valle del Mella (esclusivamente in destra idrografica); secondo l'interpretazione dello scrivente, il ripiano sarebbe modellato nei depositi fluvioglaciali tardo-pleistocenici.


Come precisato nel capitolo precedente, si ritiene che nella morfogenesi locale abbia giocato un ruolo fondamentale la componente neotettonica: i ripiani terrazzati olocenici del Mella potrebbero derivare dal progressivo ringiovanimento del territorio a seguito di successivi innalzamenti del substrato pre-Quaternario.

Un'analisi di maggior dettaglio delle alluvioni oloceniche del Mella, inoltre, rivela una situazione non priva di una complessa articolazione, derivante da esili scarpate morfologiche, dossi e depressioni testimoni di ripetute divagazioni del corso d'acqua in un recente passato, risultato di un sistema fluviale estremamente dinamico, legato ad eventi meteoclimatici ad alta ciclicità (regimi di morbida e di piena del fiume).

Per meglio interpretare i processi morfologici e sedimentari fluviali che hanno dato vita a questo lembo di territorio, vale la pena ricordare come, secondo lo schema introdotto da Trevisan (1968), il Mella presenti tratti rettilinei (condizionati dell'intervento antropico) alternati ad altri con un tipico alveo di tipo "E", ovvero con la caratteristica struttura a meandri di pianura alluvionale soggetta a inondazione durante le piene maggiori. I meandri sono forme fluviali in rapida evoluzione a causa della facile erodibilità delle sponde sabbiose. La pianura circostante, per effetto dei depositi abbandonati durante le inondazioni, tende ad innalzarsi, aumentando nel tempo il dislivello tra il fondo dell'alveo ed il piano di

inondazione. L'innalzamento degli argini naturali limita a sua volta le esondazioni, cosicchè i materiali solidi, deposti in alveo durante le fasi di decrescita delle piene, determinano la pensilità del fiume sulla pianura circostante e ne favoriscono le esondazioni.

In relazione alla morfogenesi fluviale, è noto come il meandro di pianura mostri una spiccata tendenza ad accentuarsi. Il filone centrale della corrente, infatti, si sposta verso la parte esterna del meandro e corre in vicinanza della sponda concava, contrariamente a quanto avviene su quella convessa. In una successione di meandri, quindi, la corrente lambisce successivamente la riva destra e la sinistra, descrivendo sinuosità maggiori di quelle mostrate dall'alveo: la capacità erosiva del filone principale della corrente, perciò, tende ad aumentare la sinuosità del fiume in ogni ansa, sottoponendo la riva concava ad una erosione progressiva; sulla sponda convessa, invece, la corrente, più lenta rispetto alla riva concava, abbandona una parte del carico trasportato e deposita la cosiddetta "barra di meandro o lobo" (di natura prevalentemente sabbiosa). Il risultato morfometrico è pertanto quello di una riva concava generalmente più ripida di quella convessa.

Terminologia ed elementi morfologici dei meandri fluviali (da "Geomorfologia, 1989 – G.B. Castiglioni)

La progressiva tendenza all'accentuazione di un meandro porta al fenomeno indicato come "salto di meandro", la cui forma relitta è un ramo del corso d'acqua indicato con il nome di lanca o mortizza che, nel tempo, è soggetto ad un progressivo impaludamento ed interramento con depositi fini (argilla e limo), caratterizzati da una diffusa componente organica.

Letto in chiave dinamica, il fenomeno morfogenetico assume significato sia come agente responsabile di forme inattive (i paleoalvei), sia come elemento di pericolosità in corrispondenza delle rive attuali del corso d'acqua.

Al proposito si segnala come, sia in ingresso che all'uscita dal territorio comunale di Offlaga, il Mella rivolga due rive concave dalla sinuosità anomala (esercitando una notevole pressione sulle ripe modellate direttamente nelle alluvioni oloceniche antiche), le quali mostrano una spiccata tendenza evolutiva per erosione.

4.2 Il "Livello Fondamentale della Pianura" e le forme ad esso associate

I depositi terrazzati tardo pleistocenici costituiscono un piano debolmente immergente verso S, caratterizzato da una marcata omogeneità planoaltimetrica, noto in letteratura con il nome di "Livello Fondamentale della Pianura (L.F.d.P.)" o "Piano Generale Terrazzato (P.G.T.)". Non più interessato dall'idrografia principale e caratterizzato da tracce di idrografia abbandonata, il Livello Fondamentale della Pianura rappresenta una forma non attiva (fatta eccezione per fenomeni geomorfologici di minor entità attivi solo localmente): i processi che produssero la formazione di questa superficie sono indubbiamente polifasici e il corpo sedimentario è attribuibile a più eventi. La superficie continua ed arealmente estesa del Livello Fondamentale della Pianura testimonia l'arresto di ogni fase di aggradazione fluviale su di essa, verificatosi un momento prima dell'instaurarsi di condizioni fortemente erosive negli affluenti di sinistra del Po: quest'ultimi, infatti, scorrono entro larghe valli incassate, occupandone spesso una porzione estremamente ridotta.

Le scarpate morfologiche che terrazzano il piano tardo-pleistocenico rappresentano i lineamenti più evidenti di questa porzione di pianura, delimitando l'ampio solco che ospita le alluvioni oloceniche del fiume Mella. Le scarpate morfologiche raggiungono un'altezza variabile sino a un massimo di circa 5-6 m e, quando presentano caratteristiche naturali, assumono i connotati di un versante molto acclive, ormai relitto e privo di significativi fenomeni di instabilità. Frequentemente le scarpate morfologiche risultino rimaneggiate da ripetuti interventi antropici (finalizzati all'estrazione di inerti) mentre localmente sono ridotte a caratteristiche rotture di pendenza del piano di campagna.

Al margine occidentale del territorio comunale è stata cartografata anche una depressione valliforme presente sul Livello Fondamentale della Pianura, probabile testimone di un antico percorso fluviale ormai estinto, sulla quale si è impostata l'idrografia secondaria ed è interessata dalla presenza di caratteristici fenomeni sorgentizi.

4.3 Forme dovute all'attività antropica

Pur non avendo ricostruito cronologicamente le azioni di bonifica che hanno modificato negli ultimi secoli l'assetto planoaltimetrico del territorio, si ritiene doveroso riconoscere l'importanza delle opere che hanno interessato il Comune di Offlaga a valle delle scarpate morfologiche principali, le quali, sovrapponendosi alla naturale tendenza evolutiva del territorio, hanno reso vivibili zone altrimenti paludose o soggette alla dinamica evolutiva del Mella.

Fra le forme di natura antropica sono stati cartografati i rilevati arginali lungo il Mella (che proteggono il territorio dalle esondazioni dei corsi d'acqua) e i numerosi rimaneggiamenti dell'originaria struttura morfologica (arretramenti di terrazzo, depressioni morfologiche con acqua di falda affiorante ecc.) finalizzati all'estrazione di inerti.

5. INDAGINE DI PRIMA CARATTERIZZAZIONE LITOTECNICA E PEDOLOGICA

5.1 Caratterizzazione litologica

La natura litologica dei terreni affioranti è stata definita attraverso una serie di trincee esplorative che hanno consentito di trarre considerazioni sui primi metri di suolo e sottosuolo (Allegato 1). Tutti i dati disponibili (ubicati in Tavola 2) sono poi stati oggetto di una attenta revisione critica durante il processo di interpretazione, correlando fra loro anche le informazioni dedotte da indagini di tipo stratigrafico, geotecnico e pedologico disponibili nell'archivio comunale, in quello dello scrivente e in letteratura.

La finalità dell'indagine è stata anche quella di classificare i depositi più superficiali secondo intervalli di permeabilità, necessari per le successive valutazioni sulla vulnerabilità intrinseca dell'acquifero superficiale.

Le informazioni così acquisite hanno consentito una prima caratterizzazione litotecnica dei depositi naturali, conducendo a una prima e fondamentale distinzione fra terreni granulari incoerenti (resistenza al taglio caratterizzata dal solo angolo di attrito) e terreni fini (resistenza al taglio caratterizzata soprattutto dall'esistenza di legami coesivi).

In questo modo sono state definite le seguenti unità:

UNITA' I – Sono depositi di natura prevalentemente sabbiosa o sabbioso-limosa e ghiaia subordinata (più frequente in profondità), con modeste e discontinue coperture limose, spesso derivanti da fenomeni pedogenetici – Area di affioramento: Livello Fondamentale della Pianura.

UNITA' 2 – Si tratta di depositi granulari simili ai precedenti, dai quali differiscono per una più diffusa componente ghiaiosa e più rare coperture fini – Area di affioramento: Livello Fondamentale della Pianura.

UNITA' 3 – E' caratterizzata dalla presenza di frequenti coperture limose, limo-argillose o argillose di spessore significativo (anche se generalmente contenuto in 2 m), seguite in profondità da depositi granulari – Area di affioramento: Livello Fondamentale della Pianura.

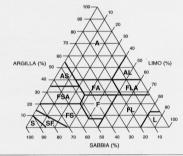
UNITA' 4 – Si tratta dei depositi alluvionali di natura sabbiosa-ghiaiosa del Mella, all'interno dei quali si riscontrano frequenti eteropie verso termini coesivi (limo e argilla). I rapporti latero-verticali tra le differenti facies litologiche sono complessi e decisamente articolati, caratteristici dei meccanismi sedimentari responsabili della loro messa in posto (classificazione U.S.C.S.: SW, SM, SP prevalenti; ML e CL subordinati) – Area di affioramento: Valle del Mella.

Sulla base dell'indagine eseguita non si riconoscono significative limitazioni di natura geotecnica; deve essere tuttavia rammentata come buona parte del territorio sia caratterizzata dalla presenza di acqua a limitata profondità (nel settore occidentale e meridionale del Livello Fondamentale della Pianura e nella valle del Mella la soggiacenza è frequentemente inferiore a 2 m), la quale contribuisce ad una saturazione dei terreni e a un generale peggioramento delle caratteristiche geotecniche dei terreni. Tale fattore trova un suo riscontro nella fattibilità geologica delle azioni di piano e condizionerà le scelte progettuali nel caso di nuovi edifici e infrastrutture: la presenza di acqua sotterranea e la relativa profondità, pertanto, dovrà essere oggetto di studio circostanziato nella modellizzazione geologica e geotecnica prevista dal D.M. 14.01.2008 e s.m.i..

Va comunque precisato che lo studio di prima caratterizzazione ha una funzione di supporto alla pianificazione generale, il cui scopo è quello di definire solo le linee fondamentali dell'assetto territoriale: come tali, le informazioni sopra esposte non possono essere considerate esaustive di tutte le problematiche geologico-tecniche e, soprattutto, non possono essere utilizzate per la soluzione di problemi progettuali a carattere puntuale (ove potrebbero verificarsi anomalie rispetto ai modelli proposti). Nella progettazione di qualsiasi struttura (opere di fondazione, infrastrutture ecc.), pertanto, sarà necessario eseguire specifiche indagini volte a definire il quadro geologico e geotecnico locale, così come previsto dalla normativa vigente.

5.2 Caratterizzazione pedologica

Nella cartografia di Tavola 2 è stata rappresentata la distribuzione areale delle classi pedologiche tratte dal "Progetto Carta Pedologica – I suoli della Pianura Bresciana Centrale (ERSAL, 1993)": in questo modo è stato possibile associare, ad aspetti puramente litologici, anche indicazioni relative allo sviluppo e alle caratteristiche dei suoli presenti nel territorio comunale.


Una prima classificazione è stata compiuta alla scala delle unità di paesaggio (o morfologiche), operando una distinzione tra:

- Il Sistema del Livello Fondamentale della Pianura, ove si sviluppano suoli da moderatamente profondi a molto profondi, il cui substrato condiziona la capacità di drenaggio.
- 2. Il Sistema della valle alluvionale del Mella, con suoli variabilmente sviluppati (da sottili a profondi) e un drenaggio da lento a buono (controllato da numerosi fattori, tra cui la presenza di una falda molto superficiale).

Nella tabella che segue sono riportati i criteri di classificazione utilizzati per la descrizione dei suoli nella legenda della Tavola 2.

Profondità (cm)		Scheletro (%	6)	Carbonati	Carbonati totali (%)		Pietrosità superficiale (utile all'approfondimento radicale)		Dimensione pietre	
0 - 25	molto sottili	<1	assente	< 0.5	non calcareo	< 0,1 %	scarsa o nulla	Ø < 7,5 cm	piccole	
25 - 50	sottili	1-5	scarso	0.5 -5	scarsamente calcareo	0,1 - 3 %	moderata	Ø 7,5 - 25 cm	medie	
50 - 100	moderatamente profondi	5 - 15	comune	5 - 10	moderatamente calcareo	3 - 15 %	comune	Ø > 25 cm	grandi	
100 - 150	profondi	15 - 35	frequente	10 - 20	calcareo	15 - 50 %	elevata			
> 150	molto profondi	35 - 70	abbondante	> 20	molto calcareo	> 50 %	eccessiva			
		>70	molto abbondante							
Saturazione (TSB) (%)		Reazione		Pendenza (%)		Capacità di scambio cationico (CSC) (meq/g)				
<35	molto bassa	<4.5	molto acida	<2	nulla o debole	< 10	bassa			
35 - 49	bassa	4.5 - 5.5	acida	2-5	bassa	10 - 20	media			
50 - 75	media	5.6 - 6.5	subacida	5 - 15	moderata	20 - 30	elevata			
>75	alta	6.6 - 7.3	neutra	15 - 25	moderatamente elevata	> 30	molto elevata			
		7.4 - 7.8	subalcalina	25 - 45	elevata					
		7.9 - 8.4	alcalina	45 - 75	molto elevata					
		8.5 - 9.0	molto alcalina	>75	estremamente elevata					
		>9.0	estremamente alcalina							

Tessitura

S e SF grossolana

FS grossolana e fine moderatamente grossolana

FS m. fine, F, FL, L media

FSA, FA, FLA moderatamente fine

A, AS, AL

fine

Drenaggio

Rapido: l'acqua è rimossa dal suolo molto rapidamente; presenza di falda o falda sospesa rara o molto profonda, tessitura comunemente grossolana e permeabilità elevata; suoli in pendenza molto sottili.

Moderatamente rapido: l'acqua è rimossa dal suolo rapidamente; presenza di falda o falda sospesa rara o molto profonda, tessitura comunemente grossolana e permeabilità moderatamente elevata; suoli in pendenza e sottili.

Buono: l'acqua è rimossa prontamente dal suolo, ma non rapidamente; falda o falda sospesa profonda se transitoria o molto profonda se da transitoria a permanente; permeabilità moderata. Durante la stagione di crescita l'acqua facilmente disponibile non è mai in difetto ed eventuali brevi periodi di surplus di bilancio idrico non inibiscono in modo significativo la crescita delle radici. I suoli sono generalmente privi di caratteri redossimorfici che possono eventualmente manifestarsi olitre il metro di profondità.

Medicore: in alcuni periodi dell'anno l'acqua è rimossa dal suolo piuttosto lentamente; falda o falda sospesa moderatamente profonda se transitoria, o profonda se da transitoria a permanente; permeabilità moderatamente bassa o più bassa in uno strato entro il metro di profondità; clima umido caratterizzato da periodiche forti precipitazioni.

Lento: l'acqua è rimossa lentamente dal suolo il quale è periodicamente bagnato per periodi significativi durante la stagione di crescita; falda o falda sospesa poco profonda se transitoria, o moderatamente profonda se da transitoria a permanente; permeabilità bassa o molto bassa; apporti idrici quasi continui.

Molto lento: l'acqua è rimossa così lentamente che i suoli sono periodicamente bagnati a poca profondità per lunghi periodi durante la stagione di crescita; falda o falda sospesa persistente poco profonda o superficiale, eventualmente transitoria; permeabilità bassa o molto bassa; apporti idrici quasi continui.

Impedito: l'acqua è rimossa così lentamente che i suoli sono periodicamente bagnati in superficie o in prossimità di questa per lunghi periodi durante la stagione di crescita; falda o falda sospesa superficiale persistente o permanente; giacitura depressa concava e priva di drenaggio esterno; elevati apporti idrici praticamente continui, associati anche a suoli in pendenza.

6. RETICOLATO IDROGRAFICO

Per effetto dell'art. 1 della L. 36/94 e del successivo regolamento di applicazione (DPR 238/99), il concetto di acqua pubblica è stato innovato rispetto al vecchio T.U. n. 1775/1933, introducendo nell'ordinamento il principio di pubblicità di tutte le acque superficiali e sotterranee. La L.R. 1/2000, in attuazione del D.Lgs. n. 112/98, ha previsto l'obbligo per la Regione di individuare il reticolo principale sul quale la Regione stessa continuerà a svolgere le funzioni di polizia idraulica (ex R.D. n. 523/1904), trasferendo ai comuni o ai consorzi le competenze sul reticolo idrico minore e su quello di bonifica.

Nel corso del presente lavoro, sulla base della D.G.R. n. 7/7868 del 25.01.2002 "Determinazione del reticolo idrico principale..." e della successiva modifica con D.G.R. n. 7/13950 del 01.08.2003, viste le dirette conseguenze urbanistiche derivanti dall'applicazione della norma di pubblicità di tutto il reticolato idrografico (principale, di bonifica e minore), il Comune di Offlaga ha affidato allo scrivente il compito di predisporre gli elaborati tecnici e cartografici richiesti dalla specifica normativa della Regione Lombardia.

Nella Carta del Reticolo Idrografico di Tavola 4, estratta dallo specifico studio, è stato individuato l'intero reticolato idrografico definito sulla base dei criteri disposti dalla D.G.R. n. 7/7868 del 25.01.2002 e s.m.i.

<u>RE</u>	<u>Elenco 1</u> TICOLO PRINCIPALE di COMPETENZA DELLA REGIONE LOMBARDIA (allegato A della DGRL 01.10.2008 n. 8/8127)								
Codice	Codice Denominazione								
BS061	Fiume Mella								

	Elenco 2 RETICOLO PRINCIPALE di COMPETENZA DEL CONSORGIO RISCHIA CHIADO PRANDONA
	DEL CONSORZIO BISCHIA CHIODO PRANDONA (allegato D della D.G.R.L. 11.02.2005 n. 7/20552, modificato dalla D.G.R.L. 01.10.2008 n. 8/8127)
Codice	Denominazione
	Vaso Cignana
	Vaso Condotta
	Vaso Manerbino Primo

Vaso Manerbio Secondo

	<u>Elenco 3</u> RETICOLO MINORE di COMPETENZA DEL COMUNE DI OFFLAGA								
Codice	Denominazione								
OFF01	Vaso Aiguetta								
OFF 02	Fontanile del Baito								
OFF 03	Vaso Barbisona								
OFF 04	Roggia Brassaga								
OFF 05	Roggia Calina								
OFF 06	Colatore Feniletto								
OFF 07	Fiumazzo								
OFF 08	Seriola Gambarina								
OFF 09	Vaso Lavaculo								
OFF 10	Rio Lusignolo (Vaso Fiume)								
OFF 11	Seriola Lusignolo								
OFF 12	Seriola Maletta								
OFF 13	Fosso Molone								
OFF 14	Torrente Bavenola								
OFF 15	Roggia della Sella								
OFF 16	Vaso Serioletta								

L'analisi morfologica del territorio comunale di Offlaga ha condotto all'individuazione di due unità topograficamente, morfologicamente e idraulicamente distinte: il Livello Fondamentale della Pianura e la valle del Mella.

- 1. La prima unità morfologica (Livello Fondamentale della Pianura) si presenta come una superficie sub-pianeggiante, modestamente immergente verso quadranti meridionali e caratterizzata da una significativa monotonia planare, ad eccezione del suo settore occidentale inciso da una caratteristica depressione valliforme. Nel sottosuolo la falda idrica si sviluppa a profondità variabile (fortemente influenzata dall'effetto drenante esercitato dal Mella) e il reticolo idrico presenta tre modalità di alimentazione:
 - a. da N attraverso derivazioni di acqua utilizzata a scopi irrigui;
 - b. da fenomeni sorgentizi (particolarmente evidenti nel settore occidentale);
 - c. dalla raccolta delle colature sia di natura irrigua che meteorica.

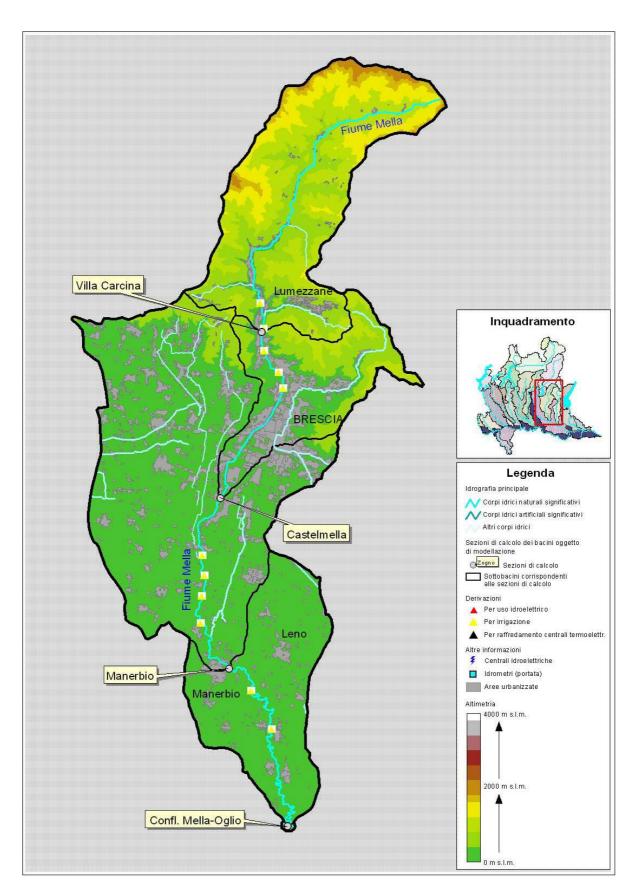
- 2. La seconda Unità (Valle del Mella) occupa la depressione olocenica del corso d'acqua ed è caratterizzata da un reticolo alimentato:
 - a. dalle colature provenienti dal sovrastante terrazzo;
 - b. da fenomeni di affioramento della falda idrica sotterranea;
 - c. da derivazioni ad uso irriguo.

Nel riconoscere l'assenza di fattori di rischio derivanti dallo sviluppo dei corsi d'acqua minori è stato evidenziato l'importante ruolo svolto dal reticolo idrico e la necessità di tutelarlo quale opera di difesa idraulica ed idrogeologica.

6.1 Il Fiume Mella

L'elemento principale del reticolato idrografico di questo lembo di pianura è costituito dal fiume Mella, il quale presenta una tipica "valle a cassetta" incisa entro il Livello Fondamentale della Pianura.

Il Fiume Mella ha origine in alta Valle Trompia, presso il Passo del Maniva alle pendici del Dosso Rotondo. Il Mella confluisce in Oglio, dopo un percorso di 96 km, tra Seniga ed Ostiano. L'orientamento del bacino è prevalentemente da nord a sud e la superficie del bacino imbrifero sotteso alla sezione di confluenza con il Fiume Oglio è di 1038 km².


Considerata la mole di dati necessaria ad una dettagliata analisi del Mella e viste le finalità del presente studio, in questa sede ci si è limitati ad evidenziare le caratteristiche salienti del Fiume in quest'area di pianura, ove presenta la classica morfologia a meandri.

Allo stato attuale l'evoluzione del corso d'acqua è chiaramente "guidata" dalle difese spondali, dalle arginature e dalle opere idrauliche esistenti: in questo contesto, perciò, non ha significato definire la tendenza evolutiva naturale mentre sarebbe interessante cercare di prevedere quali effetti gli interventi antropici possano produrre nel tempo. Questi interventi, infatti, implicano generalmente la variazione di alcuni parametri geomorfologici ed idraulici (pendenza, larghezza, profondità, scabrezza, ecc.) ai quali il corso d'acqua reagisce adeguandosi con la variazione di altri parametri idraulici (velocità di flusso, capacità di trasporto, ecc.).

Nel complesso, gli studi generali del P.A.I. evidenziano per il Mella una ridotta evoluzione morfologica per effetto di un bacino montano di limitata estensione e, conseguentemente, di contenuti fenomeni di erosione, di trasporto solido e di sedimentazione. Per il fiume Mella, inoltre, l'evoluzione morfologica appare ridotta rispetto a quanto accaduto in passato, a causa della stabilizzazione planimetrica imposta dalla progressiva artificializzazione dell'alveo.

Vanno comunque segnalati, a scala locale, evidenti fenomeni di dissesto delle sponde, così come evidenziato nella Carta geomorfologica allegata (Tavola 1).

Nel tratto compreso tra Corticelle Pieve e Pavone Mella, il Fiume è scarsamente arginato: il limite della fascia di esondazione coincide in generale con gli orli di terrazzo che delimitano l'area di divagazione storica. Nel tratto da Pavone Mella alla confluenza in Oglio, invece, il corso d'acqua ha arginature in froldo. La fascia di esondazione per piene bisecolari (fascia B del P.A.I.), con un'ampiezza compresa tra 650 e 1000 m, si attesta in prevalenza sull'orlo del terrazzo, il quale delimita l'area di divagazione naturale dell'alveo a meandri.

Il bacino imbrifero del Mella (da P.T.U.A. della Regione Lombardia)

6.2 Il Bacino del Mella: i dati idrologici disponibili¹

Le informazioni idrologiche del Mella presentate sono quelle desunte dal Programma Tutela e Uso Acqua (P.T.U.A.) della Regione Lombardia, il quale analizza alcune sezioni, ubicate rispettivamente a Villa Carcina, a Castelmella, a Manerbio e alla confluenza in Oglio; il tratto di nostro interesse (Offlaga) si sviluppa poco a monte della sezione di Manerbio. Nella tabella seguente sono riportate le coordinate geografiche (Gauss-Boaga) delle sezioni di calcolo e le principali caratteristiche geomorfologiche dei sottobacini idrografici sottesi dalle sezioni citate.

Il P.T.U.A. elabora specifici calcoli (dei quali si riportano brevemente i risultati) per determinare sia le portate naturali (non esistono sezioni di misura lungo l'intera asta), sia le sue criticità.

Sezione	Χ	Y	Area [km²]	Hmin [m.s.l.m.]	H media [m.s.l.m.]	Hmax [m.s.l.m.]
Mella a Villa Carcina	1.593.420	5.053.742	279	236	873	2205
Mella a Castellmella	1.589.662	5.038.575	419	108	685	2205
Mella a Manerbio	1.590.439	5.022.999	859	59	375	2205
Confluenza Mella - Oglio	1.595.766	5.008.666	1038	33	305	2205

Misure di precipitazione

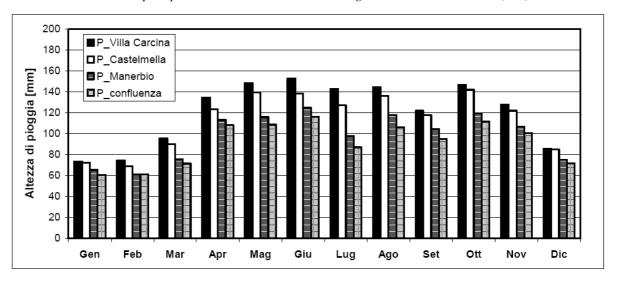
Nella Tabella seguente è riportato l'elenco delle stazioni pluviometriche utilizzate dal P.T.U.A. con la loro quota, gli anni di misura del dato, il numero complessivo degli anni di osservazione disponibili, il numero di anni completi (cioè senza lacune) ed il numero di anni utilizzati dopo l'applicazione delle metodologie di integrazione e correzione delle altezze di pioggia.

¹ Dati estratti da P.T.U.A. – Programma Tutela e Uso Acque della Regione Lombardia

Stazione	Quota [m s.l.m.]	Periodo di misura disponibile	Numero anni	N. anni completi	N. anni integrati e utilizzati
Borgonato	214	1951–1952; 1955–1975; 1992–1994; 1996–1997	27	20	27
Bovegno	750	1951-1979; 1981-1997	46	41	46
Brescia	120	1951-1990; 1994-1995	42	35	42
Caino	364	1951-1979; 1981-1984	31	26	31
Concesio	220	1951-1952; 1955-1960; 1962; 1967-1986; 1989-1993; 1996	35	35	35
Gardone	326	1951–1969; 1972–1985; 1985–1986; 1989–1992; 1994–1995	39	36	39
Lodrino	700	1951-1985; 1996-1997	37	30	37
Lumezzana valle	250	1951-1959; 1967-1979; 1981-1984	26	20	26
Memmo	1000	1951-1959; 1961-1967; 1969-1979; 1981; 1983; 1986; 1989; 1990-1995	37	29	37
S. Colombano di Collio	960	1951-1959; 1970-1979; 1982-1984	21	18	21
Brescia	149	1990-2001	11	7	11
Rodengo Saiano	176	1995-2001	7	6	7
Dello	88	1951-1958	8	8	8
TOTALE			367	311	367

Stazioni pluviometriche utilizzate nel bacino del Mella.

Per ogni stazione pluviometrica è quindi disponibile la precipitazione media annua puntuale, dalla quale si ottengono i valori riportati nella tabella seguente.


Stazione	Quota [m s.l.m.]	Altezza di precipitazione media annua misurata [mm]	Altezza di precipitazione media annua integrata [mm]
Borgonato	214	1314	1301
Bovegno	750	1502	1502
Brescia	120	1025	1718
Caino	364	1347	1339
Concesio	220	1189	1192
Gardone	326	1420	1410
Lodrino	700	1762	1798
Lumezzana valle	250	1374	1394
Memmo	1000	1378	1395
S. Colombano di Collio	960	1621	1634
Brescia	149	921	920
Rođengo Saiano	176	1295	1310
Dello	88	669	669

Altezze di precipitazione media annua misurate ed integrate delle stazioni pluviometriche utilizzate nel bacino del Mella

Le altezze di pioggia calcolate come altezze areali medie mensili in corrispondenza delle quattro sezioni di calcolo sono evidenziate nelle tabelle che seguono.

gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic
73	74	95	135	148	153	143	145	122	146	128	86
72	69	90	123	140	138	127	136	118	142	122	85
65	61	75	113	116	125	98	118	104	120	107	75
61	61	71	108	109	116	87	106	95	112	100	72
	73 72 65	73 74 72 69 65 61	73 74 95 72 69 90 65 61 75	73 74 95 135 72 69 90 123 65 61 75 113	73 74 95 135 148 72 69 90 123 140 65 61 75 113 116	73 74 95 135 148 153 72 69 90 123 140 138 65 61 75 113 116 125	73 74 95 135 148 153 143 72 69 90 123 140 138 127 65 61 75 113 116 125 98	73 74 95 135 148 153 143 145 72 69 90 123 140 138 127 136 65 61 75 113 116 125 98 118	73 74 95 135 148 153 143 145 122 72 69 90 123 140 138 127 136 118 65 61 75 113 116 125 98 118 104	73 74 95 135 148 153 143 145 122 146 72 69 90 123 140 138 127 136 118 142 65 61 75 113 116 125 98 118 104 120	73 74 95 135 148 153 143 145 122 146 128 72 69 90 123 140 138 127 136 118 142 122 65 61 75 113 116 125 98 118 104 120 107

Altezze di precipitazione areali medie mensili integrate nel bacino del Mella (mm)

Andamenti mensili delle altezze di precipitazione nelle diverse sezioni di calcolo delle portate

Per ogni sottobacino sotteso dalle sezioni di calcolo, infine, i dati sono stati corretti per tenere conto degli errori di stima delle precipitazioni in alta quota, attribuibili sia al basso numero di stazioni, sia alla difficoltà di stimare correttamente le precipitazioni nevose.

All'altezza di pioggia media annua areale del singolo sottobacino, infatti, il P.T.U.A. aggiunge un contributo nivale medio, espresso anch'esso come un'altezza di pioggia equivalente (S.W.E.).

Le precipitazioni medie annue areali finali e quelle ottenute nelle diverse fasi di elaborazione per i sottobacini sottesi dalle sezioni di calcolo sono riportate nella seguente tabella.

Stazione	Quota [m s.l.m.]	Altezza di precipitazione media annua misurata [mm]	Altezza di precipitazione media annua integrata [mm]
Borgonato	214	1314	1301
Bovegno	750	1502	1502
Brescia	120	1025	1718
Caino	364	1347	1339
Concesio	220	1189	1192
Gardone	326	1420	1410
Lodrino	700	1762	1798
Lumezzana valle	250	1374	1394
Memmo	1000	1378	1395
S. Colombano di Collio	960	1621	1634
Brescia	149	921	920
Rodengo Saiano	176	1295	1310
Dello	88	669	669

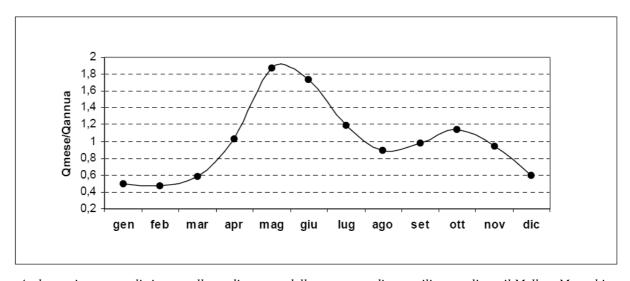
Altezze di precipitazione media annua misurate ed integrate delle stazioni pluviometriche utilizzate nel bacino del Mella.

Misure di temperatura

Per il bacino del Mella sono disponibili 8 stazioni termometriche, delle quali sono riportate le temperature medie mensili misurate.

Stazione	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic
Brescia	4.02	5.31	9.93	13.09	18.46	21.93	24.67	24.28	19.42	14.55	8.35	4.15
Rodengo Saiano	2.84	5.03	8.39	12.73	18.30	21.23	23.22	23.28	18.27	14.48	7.31	3.24
Concesio	3.30	4.90	8.99	12.25	17.84	20.30	23.88	24.18	18.39	13.29	7.85	4.19
Cortefranca	3.10	5.95	7.80	12.80	17.15	19.40	25.85	23.10	18.10	15.95	7.50	4.05
Monticelli Brusati	3.42	4.35	8.93	12.07	17.45	20.50	24.38	23.67	17.87	13.23	7.67	4.00
Poncarale	1.20	5.20	7.25	12.50	16.85	19.30	-	22.35	17.45	14.40	6.80	3.80
Brescia	3.78	5.57	10.95	13.62	19.39	22.31	25.01	25.31	19.97	14.45	9.56	4.94
Gardone Val Trompia	3.50	3.65	8.73	11.11	17.11	19.81	21.70	23.19	16.16	11.37	7.52	3.26

Temperature medie mensili misurate nelle stazioni termometriche nel bacino del Mella (°C).


Stima delle portate medie naturali

In mancanza di misure di portata nel bacino, le portate medie naturali sono state stimate riscalando il contributo unitario del Fiume Chiese alla confluenza con l'Oglio. Il confinante bacino idrografico del Chiese, infatti, ha caratteristiche di estensione, orientamento,

climatiche e geo-pedologiche simili a quello del Mella e si può quindi ritenere che i due bacini siano idrologicamente simili.

Mella a Manerbio

Nella seguente figura sono riportati gli andamenti mensili in termini percentuali rispetto alla corrispondente portata media annua (23.54 m³/s); nella successiva tabella sono riportati i valori delle portate medie mensili che ne derivano.

Andamenti percentuali rispetto alla media annua delle portate medie mensili naturali per il Mella a Manerbio.

	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	media
naturali (Poli03)	11.78	11.13	13.80	24.38	44.07	41.06	28.10	21.00	23.25	27.05	22.28	13.94	23.54

Portate medie mensili naturali calcolate alla sezione di Manerbio (m³/s).

6.3 Dati disponibili su derivazioni e scarichi

<u>Usi idroelettrici.</u> Nel bacino del Mella non sono presenti impianti di derivazione ad uso idroelettrico.

<u>Usi irrigui.</u> Per il bacino idrografico del Mella sono disponibili le portate medie di derivazione estiva per alcune concessioni irrigue. La portata media estiva complessivamente

concessa è pari a 12.65 m³/s; nella tabella che segue sono indicati i dati disponibili sulle portate derivate dalle prese a scopo irriguo, ricavate dal Catasto Regionale delle Utenze Idriche della Regione Lombardia.

Nome	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	media annua derivata	media annua da concessione
Derivazioni a monte di Castelmella	0	0	0	6.00	6.00	6.00	6.00	6.00	6.00	0	0	0	-	3.01
Roggia Movica	0	0	0	0.75	0.75	0.75	0.75	0.75	0.75	0	0	0	-	0.38
Consorzio Gambaresca	0	0	0	2.00	2.00	2.00	2.00	2.00	2.00	0	0	0	-	1.00
Vaso Calcagna	0	0	0	0.80	0.80	0.80	0.80	0.80	0.80	0	0	0	-	0.40
Roggia Bassana	0	0	0	0.50	0.50	0.50	0.50	0.50	0.50	0	0	0	-	0.25
Vaso Martinoni	0	0	0	1.40	1.40	1.40	1.40	1.40	1.40	0	0	0	-	0.70
Roggia Santa Giovanna	0	0	0	1.20	1.20	1.20	1.20	1.20	1.20	0	0	0	-	0.60

Portate medie mensili e media annua concessa ai canali irrigui a disposizione per il bacino del Mella (m³/s).

<u>Usi civili.</u> Per gli usi civili sono state considerate le portate immesse nel bacino come scarico da depuratori fognari di centri urbani le cui reti di acquedotto sono alimentate, anche solo parzialmente, da derivazioni in altri bacini. Inoltre sono state considerate, per ogni sezione di calcolo, le portate distribuite dagli acquedotti comunali alimentati da derivazioni a monte e scaricate a valle della stessa o in un altro bacino dai relativi depuratori fognari. Tali portate generalmente rappresentano solo una parte sia della portate derivate dai rispettivi acquedotti, sia delle portate scaricate dai relativi depuratori.

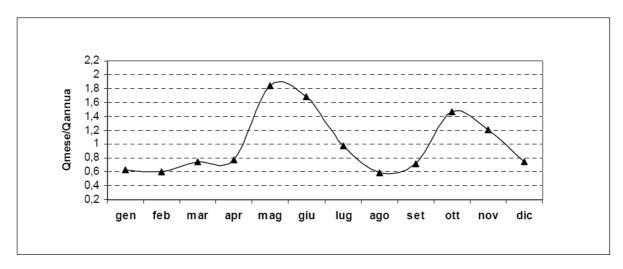
La valutazione di tali portate è stata effettuata dalle informazioni contenute nel Catasto Regionale delle Infrastrutture Idriche direttamente o in base ad una schematizzazione funzionale semplificata delle reti dei sistemi idrici.

Nella tabella seguente sono indicate le principali derivazioni civili utilizzate per il calcolo delle portate antropizzate per il bacino del Mella, complete di sottobacino di derivazione, di restituzione e con le relative portate.

Sezione	Sottobacino di derivazione	Sottobacino di restituzione	Acquedotto di derivazione	Depuratore o rete fognaria di restituzione	Portata trasferita [m³/s]
	Castellmella	Villa Carcina	Lumezzane	Lumezzane	0.012
	Villa Carcina	Castellmella	Villa Carcina	Villa Carcina	0.038
Villa Carcina	Villa Carcina	Castellmella	Brescia	Brescia	0.057
	Manerbio	Villa Carcina	Brione	Polaveno	0.001
	Villa Carcina	Barghe-bac. Chiese	Lodrino	Lodrino	0.005
Castel Mella	Castellmella	Manerbio	Brescia	-	n.d
	Manerbio	Oglio sublacuale	Provaglio d'Iseo	Paratico	0.038
	Manerbio	Oglio sublacuale	Corte Franca	Paratico	0.035
	Manerbio	Oglio sublacuale	Trenzano	Trenzano	0.002
Manerbio	Oglio sublacuale	Manerbio	Rovato	Cazzago S. M.	0.004
	Manerbio <u>sublacuale</u> Oglio	Manerbio	Offlaga	comunale	0.013
	Oglio sublacuale	Manerbio	Brescia	Brescia	0.063

Tabella – Principali derivazioni civili, complete di sottobacino di derivazione e di restituzione e portata utilizzate per il bacino del Mella (m³/s).

6.4 Stima delle portate medie antropizzate


L'analisi delle portate antropizzate è stata condotta verificando gli usi dell'acqua all'interno del bacino per individuare eventuali spostamenti di volumi idrici da monte a valle delle sezioni di interesse. In particolare sono state prese in considerazione le derivazioni irrigue più rilevanti dal punto di vista quantitativo e le informazioni a disposizione su derivazioni e scarichi civili, che sono risultati comunque di piccola entità rispetto alle portate medie. La portata media annua antropizzata è quindi stata ottenuta sottraendo alla portata naturale le portate derivate e sommando quelle scaricate a monte della sezione di chiusura.

Mella a Manerbio

Portata media annua. La portata media annua antropizzata è stata ricavata sottraendo alla portata media annua naturale le portate derivate per uso irriguo che assommano a $Q_{\rm IR}=5.04$ m³/s, e le portate derivate per uso civile e scaricate a valle o fuori bacino pari a $Q_{\rm DC}=0.08$ m³/s e sommando gli scarichi civili pari a $Q_{\rm SC}=0.08$ m³/s. La portata media annua antropizzata è quindi pari a:

$$Q_{AA} = Q_{AN} - Q_{IR} - Q_{DC} + Q_{SC} = 23.54 - 5.04 - 0.08 + 0.08 = 18.50 \text{ m}^3/\text{s}$$

Portate medie mensili. Le portate medie mensili antropizzate sono state calcolate analogamente a quella annuale sottraendo alla portata media annua naturale le portate derivate per uso irriguo, nei soli mesi da aprile a settembre, pari a $Q_{\rm IR}=10.05~{\rm m}^3/{\rm s}$, e le portate derivate per uso civile e scaricate a valle o fuori bacino pari a $Q_{\rm DC}=0.08~{\rm m}^3/{\rm s}$ e sommando gli scarichi civili pari a $Q_{\rm SC}=0.08~{\rm m}^3/{\rm s}$. Nella figura seguente sono riportati gli andamenti mensili in termini percentuali rispetto alla corrispondente media annua antropizzata mentre nella successiva tabella sono riportati i valori delle portate medie mensili che ne derivano.

Andamenti percentuali rispetto alla media annua delle portate medie mensili per il Mella a Manerbio.

	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	media annua
antropizzate (Poli03)	11.78	11.13	13.80	14.33	34.02	31.01	18.05	10.95	13.20	27.05	22.28	13.94	18.50

Portate medie mensili antropizzate calcolate alla sezione di Manerbio (m³/s).

Quadro riassuntivo delle portate

Nella tabella seguente si riportano, per ogni sottobacino, le portate medie annue antropizzate e naturali ed i relativi contributi unitari.

Comune di OFFLAGA: Studio della componente geologica, idrogeologica e sismica del Piano di Governo del Territorio - Legge Regionale 11 marzo 2005, n. 12; D.G.R. 28 maggio 2008, n. 8/7374 – Relazione geologica generale.

Bacino	A (km²)	Q_{AN} $(m^3/5)$	Q_{AA} $(m^3/5)$	Q _{AdB} (m³/s)	Q _{Poli98} (m³/s)
Mella a Villa Carcina	279	9.52	8.23	13.45	10.71
Mella a Castellmella	419	13.39	10.37	14.19	15.07
Mella a Manerbio	859	23.54	18.50	8.95	26.50
Confluenza Mella – Oglio	1038	27.16	20.82	3.28	29.86

Portate medie annue naturali e antropizzate calcolate con la procedura Poli03 e portate medie annue calcolate con le procedure AdB e Poli98 per i sottobacini del Mella.

Bacino	q _{AN} (l/5 km-2)	q _{AA} (l/s km-2)	q _{AdB} (l/5 km-²)	q _{Poli98} (l/s km-2)
Mella a Villa Carcina	34.15	29.52	48.25	38.44
Mella a Castellmella	31.95	24.76	33.88	35.96
Mella a Manerbio	27.41	21.54	10.42	30.85
Confluenza Mella – Oglio	26.17	20.06	3.40	28.77

Contributi medi annui naturali ed antropizzati calcolati con la procedura Poli03 e contributi medi annui calcolati con le procedure AdB e Poli98 per i sottobacini del Mella (l/s km²).

Nelle tabelle seguenti sono riportate le portate medie mensili naturali, quelle antropizzate e le portate calcolate con la metodologia dell'Autorità di Bacino per il bacino del Mella.

Bacino	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	media annua
Mella a Villa Carcina	4.76	4.50	5.58	9.86	17.82	16.60	11.36	8.49	9.40	10.94	9.01	5.64	9.52
Mella a Castellmella	6.70	6.33	7.85	13.86	25.06	23.35	15.98	11.94	13.22	15.38	12.67	7.93	13.39
Mella a Manerbio	11.78	11.13	13.80	24.38	44.07	41.06	28.10	21.00	23.25	27.05	22.28	13.94	23.54
Confluenza Mella – Oglio	13.60	12.84	15.92	28.13	50.86	47.37	32.42	24.24	26.83	31.21	25.71	16.09	27.16

Portate medie mensili naturali per i sottobacini del Mella (m³/s).

Bacino	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	media annua
Mella a Villa Carcina	4.68	4.41	5.49	7.37	15.33	14.11	8.87	6.00	6.91	10.85	8.92	5.55	8.23
Mella a Castellmella	6.70	6.32	7.84	7.86	19.06	17.34	9.97	5.94	7.22	15.38	12.67	7.92	10.37
Mella a Manerbio	11.78	11.13	13.80	14.33	34.02	31.01	18.05	10.95	13.20	27.05	22.28	13.94	18.50
Confluenza Mella – Oglio	13.60	12.84	15.92	15.48	38.21	34.73	19.77	11.59	14.18	31.21	25.71	16.09	20.82

Portate medie mensili antropizzate per i sottobacini del Mella (m^3/s) .

Bacino	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	media annua
Mella a Villa Carcina	11.39	11.83	12.12	14.23	14.69	14.83	13.72	13.12	13.42	13.98	15.19	12.80	13.45
Mella a Castellmella	12.37	12.76	13.01	14.88	15.29	15.42	14.43	13.90	14.17	14.67	15.74	13.62	14.19
Mella a Manerbio	8.07	8.26	8.38	9.29	9.49	9.55	9.07	8.81	8.94	9.18	9.70	8.68	8.95
Confluenza Mella – Oglio	3.01	3.06	3.10	3.38	3.44	3.46	3.31	3.23	3.27	3.35	3.51	3.19	3.28

Portate medie mensili calcolate con la metodologia dell'Autorità di Bacino per i sottobacini del Mella (m³/s).

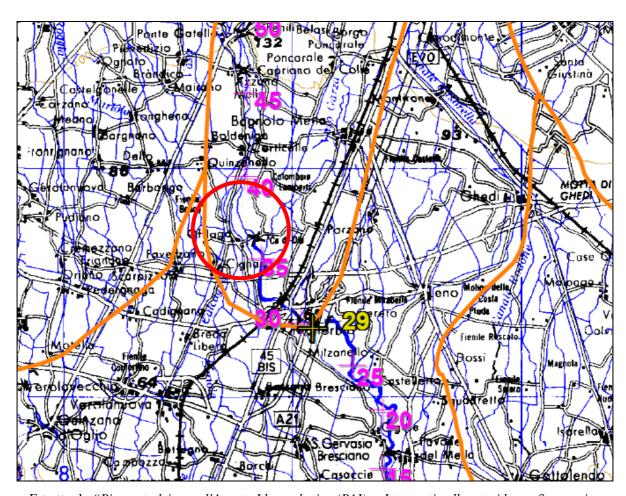
Osservazioni sulle possibili criticità

Considerando come indice di criticità la presenza in alveo di portate inferiori al 10% o al 20% del valore medio della portata media annua naturale, si osserva che questa situazione non si verifica in alcun mese. Nelle seguenti tabelle sono riportate, in termini percentuali rispetto al valore medio della portata media annua naturale, le portate naturali e quelle antropizzate medie mensili calcolate.

Bacino	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	annuo
Mella a Villa Carcina	0.50	0.47	0.59	1.04	1.87	1.74	1.19	0.89	0.99	1.15	0.95	0.59	1
Mella a Castellmella	0.50	0.47	0.59	1.04	1.87	1.74	1.19	0.89	0.99	1.15	0.95	0.59	1
Mella a Manerbio	0.50	0.47	0.59	1.04	1.87	1.74	1.19	0.89	0.99	1.15	0.95	0.59	1
Confluenza Mella - Oglio	0.50	0.47	0.59	1.04	1.87	1.74	1.19	0.89	0.99	1.15	0.95	0.59	1

Andamenti percentuali rispetto alla media annua naturale delle portate medie mensili naturali per i sottobacini del Mella.

Bacino	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	annuo
Mella a Villa Carcina	0.49	0.46	0.58	0.77	1.61	1.48	0.93	0.63	0.73	1.14	0.94	0.58	0.86
Mella a Castellmella	0.50	0.47	0.59	0.59	1.42	1.30	0.74	0.44	0.54	1.15	0.95	0.59	0.77
Mella a Manerbio	0.50	0.47	0.59	0.61	1.45	1.32	0.77	0.47	0.56	1.15	0.95	0.59	0.79
Confluenza Mella - Oglio	0.50	0.47	0.59	0.57	1.41	1.28	0.73	0.43	0.52	1.15	0.95	0.59	0.77


Andamenti percentuali rispetto alla media annua naturale delle portate medie mensili antropizzate per i sottobacini del Mella.

Alla luce di quanto sopra descritto, pertanto, è evidente come gli usi idrici principali siano di tipo irriguo. Gli andamenti delle portate nel corso d'acqua, quindi, si discostano da quelli naturali sostanzialmente solo nel periodo irriguo (aprile-settembre), quando avvengono diminuzioni fino a circa il 50% della portata del corso d'acqua rispetto alle portate naturali nel periodo equivalente.

Le informazioni sopra presentate, tratte dal P.T.U.A., rappresentano tuttavia una situazione media e non sono in grado di descrivere il trend negativo che, nell'ultimo decennio, sta investendo l'intero territorio lombardo, portando a un progressivo calo delle portate naturali durante i periodi estivi più siccitosi: tale tendenza dovrebbe essere oggetto di specifici studi anche in considerazione della necessità di regolare le derivazioni irrigue e di mantenere un corretto deflusso all'interno della rete idrica naturale.

6.5 Gli eventi di piena del Mella²

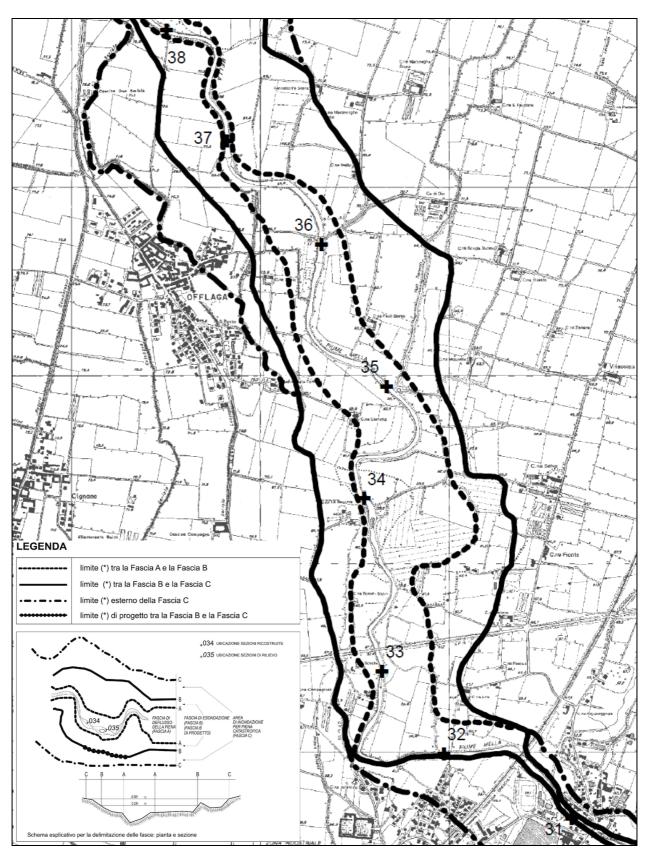
Considerata la pericolosità per il territorio insita negli eventi di piena del Mella, nel corso dello studio è stata posta particolare attenzione a cartografare le fasce di esondazione previste dal Piano Stralcio per l'Assetto Idrogeologico (P.A.I.). A monte della perimetrazione di suddette fasce, il P.A.I. ha condotto uno specifico studio volto a definire portate e inviluppo del profilo delle piene in corrispondenza di specifiche sezioni.

Estratto da "Piano stralcio per l'Assetto Idrogeologico (PAI) - Interventi sulla rete idrografica e sui versanti - 7. Norme di attuazione: Direttiva sulla piena di progetto da assumere per le progettazioni e le verifiche di compatibilità idraulica - Allegato 5: Portate e inviluppo del profilo idrico di piena di progetto per i corsi d'acqua interessati dalla delimitazione delle fasce fluviali – tav. 18" – La numerazione si riferisce alle sezioni individuate all'interno del P.A.I.

Per la zona di Offlaga, compreso tra le sezioni del P.A.I. n. 039 e n. 034, l'andamento del profilo del tirante idrico corrispondente ad una piena con tempo di ritorno di 200 anni è compreso tra una quota di 74,11 m s.l.m. e una quota di 62,66 m s.l.m..

² Dati estratti dal Piano Stralcio per l'Assetto Idrogeologico

abella	36:	profilo di p	oiena pe	r il fium	e Mella						
Sez.	Progr. (km)	T = 200 an	ni	Sez.	Progr. (km)	T = 200 an	ni	Sez.	Progr. (km)	T = 200 an	ni
		Quota idrometrica (m s.m.)	Q (m3/s)			Quota idrometrica (m s.m.)	Q (m3/s)			Quota idrometrica (m s.m.)	Q (m3/s
073	32.329	219.51	700	048	52.829	97.42		024	74.229	51.77	
072	33.129	214.98		047	53.829	94.43		023	75.329	51.27	
071	33.829	206.26		046	54.629	93.16		022	76.229	50.37	
070	34.729	200.02		045	55.529	89.42		021	77.329	49.31	
069	35.629	191.53		044	56.329	88.97		020	78.129	48.80	
068	36.429	186.09		043	57.129	88.40		019	79.129	48.61	
067	37.329	176.02		042	58.029	83.76		018	79.929	46.82	
066	38.029	167.47		041	58.929	79.33		017	80.829	45.97	
065	38.829	161.23		040	59.729	75.70		016	81.729	45.87	
064	39.729	156.81		039	60.729	74.11		015	82.729	45.45	
063	40.629	151.51		038	61.729	72.87		014	83.529	44.94	
062	41.629	143.80	820	037	62.529	70.20		013	84.729	43.89	
061	42.529	138.78		036	63.429	67.52		012	85.829	42.89	
060	43.329	135.81		035	64.429	64.04		011	86.629	41.79	
059	44.129	132.15		034	65.329	62.66		010	87.429	41.61	
058	45.029	124.76		033	66.329	62.08		009	88.329	41.50	
057	45.829	121.98		032	67.229	61.19		800	89.529	41.30	
056	46.729	118.05		031	68.129	59.91		007	90.329	40.96	
055	47.429	115.28		030	69.029	57.38		006	91.129	39.92	
054	48.229	113.42		029	69.929	56.61	900	005	92.029	39.74	
053	49.129	109.74		028	70.729	55.87		004	93.129	38.45	
052	49.929	107.16		027	71.629	54.49		003	94.329	37.70	
051	50.829	104.63		026	72.529	53.23		002	95.329	37.36	
050	51.429	99.30		025	73.429	52.26		001	96.029	37.17	90
049	52.229	99.08									


Pur con i debiti limiti di precisione, tale quote confermano come un'ampia porzione della "valle" del Mella compresa all'interno delle scarpate morfologiche principali sia allagabile dalla piena bisecolare assunta dal P.A.I. per la definizione della fascia B. Alla piena con tempo di ritorno T=200 anni corrisponde una portata di 900 m³/s e si riduce a 760 m³/s e 570 m³/s per tempi di ritorno rispettivamente di 100 e 20 anni.

Bacino	Corso d'acqua		Sezione			Q20	Q100	Q200	Q500	Idrometro
		Progr.(km)	Cod.	Denomin.	km²	m³/s	m³/s	m³/s	m³/s	Denominazione
Oglio	Chiese	82.920	114	Gavardo	934	470	610	670	750	Chiese a Gavardo
Oglio	Chiese	155.720	1	Confluenza in Oglio	1347	550	700	770	860	
Oglio	Mella	32.329	73	Concesio	277	410	580	700	810	
Oglio	Mella	41.629	62	Brescia	311	520	690	820	940	
Oglio	Mella	69.929	29	Manerbio	434	570	760	900	1030	
Oglio	Mella	96.029	1	Confluenza in Oglio	730	570	760	900	1030	
Oglio sopralac.	Oglio	31.538	64	Rino	485	420	660	790	940	
Oglio sopralac.	Oglio	61.433	33	Breno	916	520	820	980	1160	
Oglio sopralac.	Oglio	84.303	1	Confluenza in Iseo	1434	710	1050	1200	1390	
Oglio sottolac.	Oglio	101.702	179	Sarnico	1842	350	460	500	560	
Oglio sottolac.	Oglio	159.050	100	Castelvisconti	2316	440	570	630	700	Oglio a Castelviscon
Oglio sottolac.	Oglio	194.335	61	Confluenza Mella	3485	-	-	1100	-	

Ai fini di un corretto adeguamento dello strumento urbanistico alle previsioni del P.A.I., nel corso del presente studio è stata aggioranta la fascia B (Carta dei vincoli geologici) coerentemente con i criteri di perimetrazione del P.A.I. (secondo le disposizioni dell'art. 27, comma 3 delle N.d.A. del P.A.I.³): laddove il limite esterno della fascia B coincideva con una scarpata morfologica successivamente arretrata da attività estrattiva, anche il limite esterno della fascia è stato arretrato fino a coincidere con il lineamento morfologico di neoformazione.

_

³ In sede di adeguamento, gli strumenti di pianificazione provinciali e comunali, possono fare coincidere i limiti delle Fasce A, B e C, così come riportati nelle tavole grafiche di cui all'art. 26, con elementi fisici rilevabili alla scala di maggior dettaglio della cartografia dei citati piani rispettandone comunque l'unitarietà.

Le fasce del P.A.I. e l'ubicazione delle sezioni utilizzate per il calcolo delle portate e delle altezze idrometriche dell'onda di piena

7. IDROGEOLOGIA

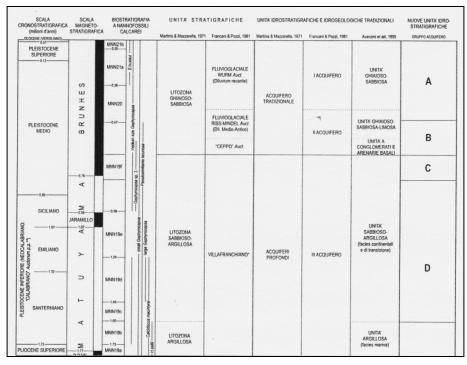
7.1 Caratteristiche idrogeologiche generali

Come accennato in precedenza, la geologia del sottosuolo comprende notevoli variazioni laterali e verticali in funzione degli eventi neotettonici e sedimentari che hanno coinvolto l'area nel Quaternario.

La successione idrogeologica a scala regionale è definita, sulla base dei dati di cui si dispone, da tre unità ben distinte anche se non sempre individuabili altrettanto chiaramente.

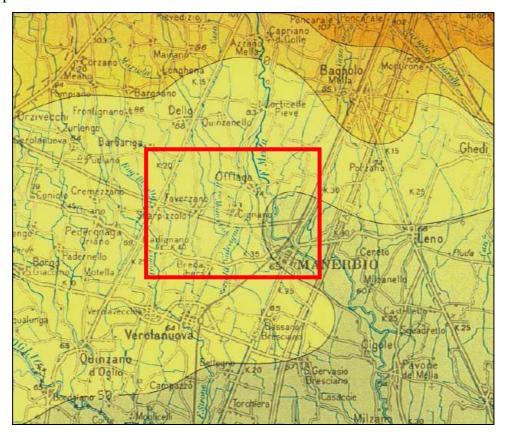
Dalla più superficiale alla più profonda le unità affioranti sono le seguenti:

- Unità ghiaioso-sabbiosa: è costituita nella parte più settentrionale del territorio padano dalle formazioni moreniche, sfumanti verso sud alle coltri fluvio-glaciali e fluviali recenti. Questa unità è costituita da depositi alluvionali (recenti ed antichi) e da quelli fluvioglaciali wurmiani, in cui le frazioni limose e argillose risultano più limitate. Essa rappresenta la litozona più superficiale con ambiente di sedimentazione tipicamente continentale, fluviale e fluvio-glaciale. E' costituita da granulometrie progressivamente più fini da N a S; il colore dei sedimenti fini denota condizioni ossidanti tipiche di un ambiente di sedimentazione sub-aereo. L'Unità ghiaioso-sabbiosa è la sede della struttura idrica più importante e tradizionalmente utilizzata in quanto caratterizzata da valori di trasmissività molto elevati. L'elevata permeabilità consente la ricarica dell'acquifero da parte delle acque meteoriche e di quelle di infiltrazione da corsi d'acqua o canali artificiali; la conducibilità idraulica che caratterizza questa unità è compresa tra valori di 10⁻³ e 10⁻⁴ m/s mentre la trasmissività è, in linea generale, superiore a 10⁻² m²/s.
- Unità sabbioso-argillosa: sottostante alla litozona ghiaioso-sabbiosa, è da questa separata da un contatto graduale e di difficile ubicazione. E' suddivisibile in due sub-unità, la prima costituita da argille, limi e sabbie con frequenti livelli torbosi o lignitosi e caratteristica di ambienti fluvio-palustri, la seconda indica invece condizioni marine costiere ed è costituita da alternanze di ghiaie e sabbie con argille e limi. Ovviamente la permeabilità è molto variabile nelle due sub-unità in funzione delle differenze granulometriche. Trattandosi di litotipi a granulometria estremamente fine, i valori di conducibilità idraulica sono piuttosto bassi e dell'ordine di 10⁻⁵ 10⁻⁶ m/s nei livelli più produttivi; anche la trasmissività risulta mediocre ed in genere inferiore a 10⁻³ m²/s. Per quanto riguarda le acque sotterranee,

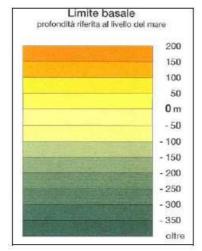

questa unità rappresenta il substrato dell'acquifero tradizionale; l'acqua è contenuta in livelli sabbiosi o sabbioso-ghiaiosi; si tratta principalmente di falde confinate con presenza talora di sostanze tipiche di ambiente riducente.

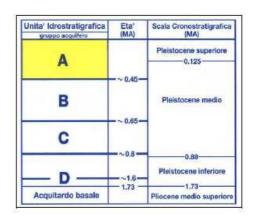
• Unità argillosa: è l'unità più profonda e più antica nell'ambito dei sedimenti quaternari e corrisponde a condizioni di sedimentazione tipicamente marine. Presenta permeabilità scarsa o nulla con rari livelli acquiferi; viene generalmente considerata il substrato idrogeologico delle unità soggette ad eventuali captazioni.

L'intera successione quaternaria, dunque, viene interpretata come fase terminale del progressivo riempimento del bacino padano, con condizioni di sedimentazione da marine a continentali.


Sulla scorta di tale osservazione ed applicando i criteri della "Sequence Stratigraphy", la Regione Lombardia, in collaborazione con ENI (Geologia degli Acquiferi Padani della Regione Lombardia, 2002), ha recentemente classificato le unità acquifere del sottosuolo sotto forma di "Sequenze Deposizionali" (sensu Mitchum et Al., 1977).

Il bacino padano viene così ridefinito in nuove Unità Idrostratigrafiche ("Gruppi Acquiferi"), secondo quanto schematizzato di seguito.




Schema dei rapporti stratigrafici (Geologia degli acquiferi padani della Regione Lombardia, 2002)

In corrispondenza del Comune di Offlaga, lo studio sopra citato indica, per la base del Gruppo Acquifero A, una quota media compresa fra -20 e -50 e m s.l.m., con una immersione verso quadranti meridionali; tuttavia, si segnala una anomalia pronunciata del limite basale a SE del capoluogo, probabile condizionamento strutturale del substrato sepolto menzionato nei capitoli precedenti.

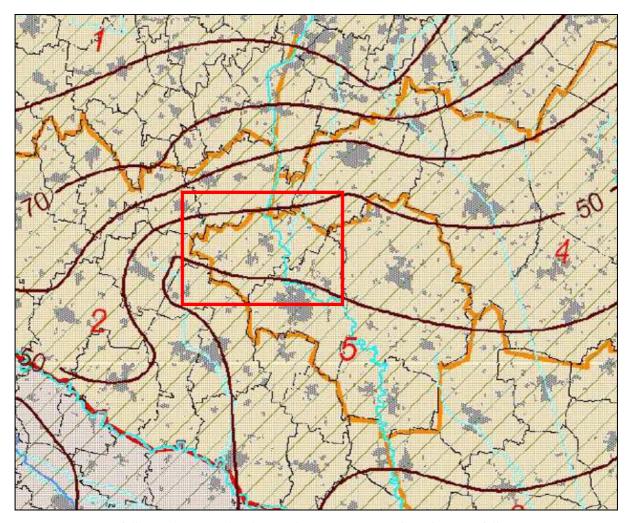
Profondità del limite basale del Gruppo Acquifero "A" (Geologia degli acquiferi padani della Regione Lombardia, 2002)

7.2 Caratteristiche idrogeologiche del territorio comunale

Nell'ambito di tutto il sud-bresciano si rinviene un complesso idrogeologico sotterraneo la cui porzione più superficiale è in stretta relazione con il sistema idrografico.

L'idrogeologia del territorio comunale di Offlaga è legata a caratteristiche strutture stratigrafiche e deposizionali che governano l'accumulo ed il transito delle acque sotterranee. Nel tentativo di ricostruire le geometrie del complesso acquifero sotterraneo sono state realizzate e presentate due sezioni litostratigrafiche orientate rispettivamente circa N-S e W-E (Tavola 5), ottenute correlando le stratigrafie disponibili dei pozzi presenti sul territorio comunale e sulle aree ad esso limitrofe.

Dall'esame delle stratigrafie e delle sezioni litostratigrafiche realizzate si evince come l'assetto geometrico-strutturale del sottosuolo sia assimilabile ad un materasso alluvionale, all'interno del quale sono riconoscibili due circuiti chiaramente separati:


- 1. Un circuito superficiale, che nel sottosuolo di Offlaga assume caratteristiche generalmente freatiche e viene alimentato sia da monte (secondo la direzione di deflusso idrogeologico), sia per infiltrazione diretta (a seguito di precipitazioni meteoriche o durante la pratica irrigua).
- 2. Un circuito profondo (o confinato-artesiano), ospitato in orizzonti permeabili protetti al tetto da depositi impermeabili di significativo spessore ed estensione laterale; contrariamente a quello di superficie, nel circuito profondo il deflusso avviene solo in senso laterale con alimentazione da aree poste idrogeologicamente a monte.

Sulla base dei dati disponibili i depositi permeabili che costituiscono la struttura acquifera più superficiale presentano spessore generalmente contenuto entro 20-30 m, all'interno dei quali eventuali orizzonti impermeabili presentano limitato spessore e continuità laterale ridotta.

La sezione E-W allegata, inoltre, evidenzia alcune superfici d'erosione e/o di discontinuità stratigrafica in corrispondenza del contatto tra i depositi wurmiani (fW) e quelli olocenici del Mella (a2 e a1). In mancanza di informazioni stratigrafiche di maggior dettaglio, le geometrie delle superfici di discontinuità sono accennate solamente in modo schematico.

Per quanto concerne il P.T.U.A. della Regione Lombardia, esso assume il modello interpretativo già proposto da vari Autori (Martinis & Mazzarella, 1971; Francani & Pozzi,

1981), secondo il quale la struttura acquifera viene suddivisa in acquifero tradizionale (litozona ghiaioso-sabbiosa) e in acquifero profondo (litozona sabbioso-argillosa). Nell'acquifero tradizionale si riconosce una struttura superficiale (o primo acquifero) separata da una sottostante (o "secondo acquifero", anch'esso appartenente all'acquifero tradizionale). Per il Bacino "Oglio-Mincio", settore 5 (a cui appartiene il Comune di Offlaga), l'orizzonte di separazione tra la falda superficiale e la falda confinata dell'acquifero tradizionale è posto a una quota compresa fra 50 e 40 m s.l.m., ovvero a una profondità di circa 25-30 m, confermando così i dati stratigrafici disponibili e il modello innanzi esposto.

Base dell'acquifero superficiale (Tavola 3 – Programma di tutela e Uso delle Acque)

Il Programma di Tutela e Uso delle Acque (P.T.U.A.) della Regione Lombardia, inoltre, definisce per il settore 5 il seguente bilancio idrico:

$1.37 \text{ m}^3/\text{s}$
$0.81 \text{ m}^3/\text{s}$
$2.18 \text{ m}^3/\text{s}$
$0.38 \text{ m}^3/\text{s}$
$0.42 \text{ m}^3/\text{s}$
$0.99 \text{ m}^3/\text{s}$
$0.39 \text{ m}^3/\text{s}$
$2.18 \text{ m}^3/\text{s}$

Per lo stesso settore viene definita una Classe Quantitativa "A" (rapporto prelieviricarica=0.48), corrispondente a una situazione di compatibilità fra disponibilità e uso della risorsa sotterranea, ovvero un uso sostenibile delle acque sotterranee senza prevedibili sostanziali conseguenze negative nel breve-medio periodo.

Classe Quantitativa:	A
(Prelievi/Ricarica = 0.48)	Situazione di attuale compatibilità fra
	disponibilità e uso della risorsa; uso sostenibile
	delle acque sotterranee senza prevedibili
	sostanziali conseguenze negative nel breve-
	medio periodo.
Classificazione livello falda:	-1
Classificazione stato quantitativo secondo D.	Lgs. 152: A

7.3 Censimento e catalogazione dei pozzi

Considerato che in un'area di pianura la principale fonte di approvvigionamento idrico è costituita da pozzi, l'indagine idrogeologica è stata orientata sin dall'inizio alla ricerca e classificazione delle opere di captazione.

I pozzi censiti, con relativa numerazione, ubicazione e profondità, sono riportati nella tabella in allegato 2 ed evidenziati nella Carta Idrogeologica di Tav. 4.

7.4 Indagine piezometrica

La Carta Idrogeologica (Tav. 4) rappresenta la situazione rilevata nel mese di ottobre 2006 attraverso una campagna di misure piezometriche effettuate nelle trincee esplorative nel corso dell'indagine litotecnica. La ricostruzione delle isopiezometriche della falda superficiale descrive una generale direzione di flusso sotterraneo orientata verso quadranti meridionali con marcate anomalie sia in corrispondenza della valle del Mella (settore centrale del territorio) sia in corrispondenza della depressione morfologica valliforme che si sviluppa a W dell'abitato di Faverzano: in entrambi i casi, le linee di flusso subiscono una netta deviazione verso l'asse delle due valli, a conferma dell'effetto drenante esercitato dai due sistemi idrogeomorfologici.

Va comunque precisato che le linee isopiezometriche descrivono una situazione media dei potenziali piezometrici i quali, nella realtà, possono presentare sensibili differenze.

Ciò premesso, il particolare assetto piezometrico si traduce anche in termini di gradienti e di soggiacenza della superficie piezometrica: i gradenti e la soggiacenza maggiori (sino a valori dell'ordine di 5 m) si rilevano sul ripiano modellato nei depositi pleistocenici in prossimità del suo margine terrazzato sulla valle del Mella. Le soggiacenze più ridotte, invece, si rilevano sul Livello Fondamentale della Pianura nelle zone più distanti dalle scarpate morfologiche e al piede delle principali scarpate morfologiche, ove sono presenti fenomeni sorgentizi. I più interessanti sono quello a N del capoluogo (sorgente della Seriola Maletta), immediatamente a valle delle scarpate che terrazzano il Livello Fondamentale della Pianura, e quelli al limite occidentale del territorio (che alimentano il Fontanile del Baito e il Vaso

Condotta), al piede di una caratteristica scarpata morfologica attribuita a un antico percorso fluviale inciso nel Livello Fondamentale della Pianura. In entrambi i casi, la venuta a giorno della superficie piezometrica si manifesta secondo il classico meccanismo delle sorgenti di terrazzo.

Nella carta di tavola 4, sulla base dei rilievi e delle considerazioni di cui sopra, il territorio è stato suddiviso per classi di soggiacenza della superficie piezometrica, ovvero:

- Soggiacenza inferiore a 2 m, in corrispondenza del porzione centro-meridionale del Livello Fondamentale della Pianura nelle aree più distanti dal bordo del terrazzo, in corrispondenza della valle olocenica del Mella e lungo la paleovalle che si sviluppa ai margini occidentali del territorio comunale;
- 2. <u>Soggiacenza compresa fra 2 e 5 m</u>, sul Livello Fondamentale della Pianura nel settore centro-settentrionale e orientale del territorio comunale.

Quanto sopra conferma come il sistema idrografico di superficie, centrato sulla presenza del fiume Mella, ed il complesso delle acque sotterranee siano fra loro interconnessi secondo un delicato equilibrio. Nonostante in tutto il territorio comunale, così come in un suo intorno significativo, non siano note registrazioni sistematiche delle oscillazioni piezometriche che consentano di effettuare considerazioni idrogeologiche in merito a possibili variazioni delle linee di deflusso nel breve periodo (periodi di minima e massima escursione annuale) e nel lungo periodo, si esclude che la pratica irrigua o le precipitazioni meteoriche, anche se intense o concentrate in taluni periodi dell'anno, siano in grado di modificare in modo sostanziale le linee di deflusso sotterraneo, ad eccezione delle aree più vicine al Mella. Esperienze maturate dallo scrivente in contesti analoghi, infatti, indicano come, durante i periodi di piena del Fiume, la falda superficiale subisca oscillazioni verso l'alto, con localizzate e temporanee inversioni del deflusso sotterraneo (alimentazione Fiume-falda).

7.5 Vulnerabilità degli acquiferi

La vulnerabilità degli acquiferi è definita dalla possibilità di infiltrazione e propagazione degli agenti inquinanti provenienti dalla superficie o da altre falde più superficiali già compromesse.

Questo concetto implica uno stato di potenziale minaccia della qualità originaria delle acque sotterranee, determinato unicamente dalle condizioni ambientali, sia naturali che antropiche, esistenti e indipendenti dalle sorgenti inquinanti.

Considerando la possibilità di accesso verso le falde profonde di potenziali agenti inquinanti, appare evidente come i sedimenti permeabili offrano scarse difese mentre per gli acquiferi più profondi si riscontrano buone condizioni di isolamento e protezione. Hanno infatti un peso preponderante i seguenti fattori geologici e idrogeologici:

- la idro-litologia (ovvero il tipo e il grado di permeabilità verticale e orizzontale, che determina la velocità di percolazione dell'inquinante e l'azione di attenuazione insita nei diversi terreni);
- il tipo e lo spessore di un'eventuale copertura fine a bassa permeabilità, elemento di protezione per l'acquifero soggiacente;
- la soggiacenza della superficie piezometrica media dell'acquifero, la quale definisce lo spessore della zona insatura (direttamente proporzionale all'azione di autodepurazione);
- le condizioni di interscambio da parte di corsi d'acqua naturali e di canali artificiali, veicoli di inquinanti.

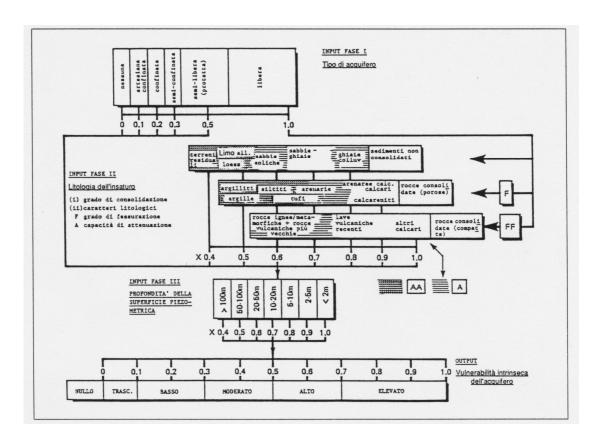
Allo scopo di quantificare i fattori sopra citati, e conseguentemente la vulnerabilità degli acquiferi, sono stati integrati i dati a disposizione.

Una prima valutazione trova riscontro nelle misure della soggiacenza del tetto della falda dal piano campagna; al proposito si rammenta come la campagna di misure piezometriche abbia evidenziato delle aree a soggiacenza caratteristica, come illustrato nel paragrafo precedente e rappresentato in Tavola 4.

In relazione alla permeabilità verticale e orizzontale dell'acquifero superficiale e del mezzo insaturo sovrastante, non esistono dati differenti rispetto alle semplici osservazioni granulometriche: ai depositi superficiali sono associabili valori di permeabilità secondo i criteri stabiliti in bibliografia.

Tipo di terreno	K (m/s)
Ghiaia pulita	10 ⁻² ÷ 1
Sabbia pulita, sabbia	
e ghiaia	10 ⁻⁵ ÷ 10 ⁻²
Sabbia molto fine	$10^{-5} \div 10^{-2}$ $10^{-6} \div 10^{-4}$
Limo	10 ⁻⁸ ÷ 10 ⁻⁶
Argilla omogenea al disotto	
della falda	< 10 ⁻⁹
Argilla sovraconsolidata	
fessurata	10 ⁻⁸ ÷ 10 ⁻⁴

Valori orientativi del coefficiente di permeabilità "K" (da "Lancellotta, 1987)


La pratica geotecnica, infatti, insegna come nei terreni sciolti la permeabilità sia controllata, oltre che dall'uniformità del terreno e dal suo stato di addensamento (Prugh, 1959), soprattutto dalla granulometria della frazione più fine (Hazen, 1911). Nella Tavola 4 sono state cartografate le aree per classi di permeabilità secondo il seguente criterio di valutazione:

k (cm/s)	1	0 ² 10	1	10-1	10	r-2 1	0-3	10⁴	10-	5 10-6	10-7	10-8	10-9
k (m/s)	1	10	-1 10-2	10-3	10	⊢ ⁴ 1	0-5	10-6	10-	7 10-8	10-9	10-10	10-11
Classi di permeabilità	EE	Elevata	Buo	na	Disc	creta		Bassa		вв	Imp	ermeab	ile
Tipi di terreno		hiaie ulite	Sabbie g pulite e sabbie	misce	le di	Sabbie fini	1	fiscele o	di mi	Limi argillosi e argille limose, fanghi argillosi		e omog compatt	

Classi di permeabilità (Casadio & Elmi, 1995)

Si tratta in genere di terreni superficiali con permeabilità da buona-elevata (ove affiorano depositi granulari) a localmente bassa-molto bassa (in presenza di coperture limoso-argillose). Inquadrando i parametri rilevati (idro-litologia, tipo di copertura dell'acquifero e soggiacenza della superficie piezometrica), l'acquifero più superficiale è stato valutato anche in termini di vulnerabilità intrinseca attraverso il metodo GOD (messo a punto dal British Geological Survey - Foster, 1987) che rappresenta, secondo le indicazioni del C.N.R., uno dei più importanti ed utili nel settore (Civita, 1994).

Il metodo GOD utilizza come dati d'ingresso tre proprietà dell'acquifero (indicizzate), il cui prodotto ne rappresenta la vulnerabilità; ovviamente la valutazione è solamente di tipo puntuale ma, stimando le condizioni medie, restituisce con affidabilità la vulnerabilità idrogeologica del territorio.

Il metodo empirico GOD per la valutazione della vulnerabilità intrinseca (da "Foster e Hirata, 1988" in "Civita, 1994")

Le tre proprietà indici utilizzate dal metodo GOD sono: il tipo di acquifero, la litologia dell'insaturo e la profondità della superficie piezometrica.

Il metodo è stato applicato integrando le informazioni dedotte dalle trincee esplorative realizzate e quelle stratigrafiche e pedologiche disponibili in letteratura, conducendo alla definizione delle seguenti classi di vulnerabilità:

- 1. VULNERABILITA' DA MODERATA AD ALTA L'acquifero si sviluppa in condizioni da semi-confinate (in presenza di esili coperture limose) a libere.
 - 2. VULNERABILITA' DA ALTA AD ELEVATA L'acquifero è generalmente libero e la soggiacenza della falda dal piano campagna è molto ridotta.

- 3. VULNERABILITA' DA BASSA A MODERATA L'acquifero è del tipo confinato o semiconfinato per la presenza di coperture limose o argillose di spessore metrico; gli indici di vulnerabilità, tuttavia, aumentano quando le coperture si assottigliano o scompaiono.
- 4. VULNERABILITA' ALTA-ELEVATA Si tratta dell'acquifero ospitato nei depositi granulari della fascia perifluviale del Mella, in cui eventuali coperture superficiali attenuano solo localmente il grado di esposizione delle acque sotterranee presenti a profondità molto ridotte. Le consistenti escursioni piezometriche e i complessi rapporti tra acque sotterranee e fiume aumentano il grado di esposizione della falda a potenziali agenti inquinanti idroveicolabili.

Sulla base di quanto esposto, quindi, la vulnerabilità intrinseca costituisce un fattore caratteristico per il Comune di Offlaga e parzialmente limitante nella pianificazione: sarà pertanto necessario valutare puntualmente la vulnerabilità intrinseca dell'acquifero ogni volta che ci si appresta alla progettazione di attività potenzialmente impattanti sulle acque sotterranee (depuratori, stoccaggi di sostanze inquinanti, dispersione di fanghi, attività estrattive, ecc.).

Con il termine di "vulnerabilità intrinseca", infatti, viene generalmente indicata la suscettività specifica dell'acquifero nei confronti di agenti inquinanti liquidi o idroveicolabili, i quali possono venire dispersi a campagna o immessi nelle acque superficiali. Associando al grado di vulnerabilità la presenza di potenziali fonti di inquinamento, presenti nonostante la naturale vocazione agricola del territorio, sarà possibile determinare il livello di rischio idrogeologico degli acquiferi presenti in una certa area.

8. PERICOLOSITA' SISMICA LOCALE

8.1 Zonazione sismica nazionale ed inquadramento del territorio di Offlaga

L'Ordinanza 3274 e s.m.i. stabilisce una nuova classificazione sismica del territorio italiano, in risposta sia alle nuove conoscenze scientifiche in materia sismica (acquisite dopo la precedente legge di indirizzo sismico del '74), sia al ripetersi di eventi calamitosi che hanno interessato anche zone precedentemente non classificate come sismiche (sempre facendo riferimento alla Legge 64/74). La nuova classificazione, che in parte utilizza e aggiorna la classificazione sismica proposta nel 1998 dal Gruppo di Lavoro istituito dal Servizio Sismico Nazionale, è articolata in 4 zone: le prime tre corrispondono, dal punto di vista della relazione con gli adempimenti previsti dalla Legge 64/74, alle zone di sismicità alta (S=12), media (S=9) e bassa (S=6), mentre la zona 4 è di nuova introduzione.

In linea generale, la valutazione del rischio sismico deriva da una stima delle conseguenze al sistema socio-economico locale potenzialmente derivanti dal terremoto considerato "probabile" nell'area di riferimento. Nella valutazione del rischio sismico, pertanto, l'aspetto principale consiste nella definizione della pericolosità sismica, ovvero la descrizione della possibile attività sismica ottenuta assegnando, in ogni area, le grandezze rappresentative del moto del suolo.

Come innanzi premesso, una prima classificazione della pericolosità sismica è stata ottenuta a scala nazionale suddividendo il territorio in zone sismiche: tale semplificazione, sebbene riduttiva, è risultata necessaria per l'applicazione di norme tecniche aventi come obiettivo un adeguato livello di protezione sismica.

Il primo atto formale di classificazione del territorio nazionale risale al 1909 (dopo il forte terremoto che investì l'area calabro-messinese il 28 dicembre 1908), con il quale vennero definite le norme tecniche per la ricostruzione nelle aree colpite dal sisma e individuate le zone nelle quali tali norme dovevano applicarsi in ambito edilizio.

L'aspetto più significativo dal punto di vista della zonazione sismica era rappresentato dall'estensione della zona interessata dal Decreto del 1909: oltre all'area dello Stretto di Messina, che presentava i maggiori danni, vi erano incluse parte della provincia di Messina e tutta la Calabria. Tale strumento derivava anche dal ricordo del terremoto che aveva colpito il golfo di Santa Eufemia nel 1905 e, soprattutto, dei terremoti che avevano sconvolto la Calabria nel 1783.

La normativa sismica non vide sostanziali novità fino al 1925, quando un forte terremoto investì un tratto della costa marchigiana, a nord di Ancona, successivamente classificata a rischio sismico.

Al Decreto del 1925 fece seguito nel 1927 un nuovo Decreto di notevole ampiezza, il quale classificava tutte le località colpite da terremoti in due categorie distinte in relazione al loro grado di sismicità ed alle loro caratteristiche geologiche.

Risale al 1962 la Legge che, per la prima volta, dettò le "Nome tecniche per le costruzioni in zona sismica" le quali, contrariamente alle precedenti finalizzate alla ricostruzione delle zone colpite da terremoto, assunsero un significato di prevenzione sismica.

Il terremoto nel Belice del 1968 e quello nel Friuli del 1976 condussero ad una classificazione con l'introduzione di un elemento di novità, costituito dal criterio utilizzato per distinguere le zone di prima e di seconda categoria. In precedenza, infatti, tale distinzione era abbastanza casuale, basata su un giudizio di gravità del danno; nei decreti del 1976 e 1979, invece, la classificazione si basava sul valore della probabilità di superamento di assegnate soglie dell'accelerazione del suolo in un prefissato intervallo di tempo.

Il terremoto Irpino-Lucano del 1980 segnò la svolta decisiva nella storia della classificazione sismica in Italia: il grande impatto sull'opinione pubblica e la constatazione che le zone colpite dal terremoto erano in gran parte non classificate, condussero il Ministero dei Lavori Pubblici alla proposta di riclassificazione elaborata nell'ambito del Progetto finalizzato geodinamica del CNR attraverso una serie di Decreti emanati tra il 1981 ed il 1984. La nuova classificazione si basò per la prima volta su parametri quantitativi definiti in modo omogeneo per tutto il territorio nazionale, come la soglia di sismicità, l'intensità risentita e la scuotibilità, e previde la suddivisione in tre categorie con grado di severità sismica decrescente dalla prima alla terza.

Nell'aprile 1997, la Commissione per la previsione dei Grandi Rischi del Dipartimento della Protezione Civile decise di istituire un gruppo di lavoro con l'obiettivo di formulare una proposta di aggiornamento della classificazione sismica nazionale, anche alla luce di nuove ricerche e dell'esperienza di altri paesi.

La nuova classificazione, denominata "Proposta 98", determinò la suddivisione del territorio nazionale sempre nelle tre categorie sismiche a cui si aggiunse una categoria ulteriore per i comuni non classificati; l'appartenenza di un'area ad una particolare categoria sismica

avvenne sulla base di parametri quantitativi legati al moto del suolo previsto (approccio probabilistico):

- l'accelerazione massima del terreno a_{max} (detta anche PGA) con il 10% di probabilità di essere superata in 50 anni, la cui distribuzione è rappresentata nella carta della pericolosità sismica (Slejko et al. 1998);
- 2. l'integrale dello spettro di risposta in pseudovelocità, detto "intensità di Housner";
- 3. il valore della massima intensità sperimentata nell'ultimo millennio.

In seguito al terremoto del 31 ottobre 2002 che provocò a San Giuliano di Puglia il crollo di una scuola e al verificarsi di eventi sismici calamitosi in zone non classificate sismiche (il Comune di San Giuliano di Puglia era classificato come non sismico) sono stati emanati i "Criteri per l'individuazione, la formazione e l'aggiornamento degli elenchi delle zone sismiche" e le nuove norme tecniche per la costruzione in zona sismica (OPCM 3274 del 20 marzo 2003).

Rispetto alle classificazioni precedenti, l'O.P.C.M. 3274 stabilisce una nuova classificazione sismica del territorio nazionale utilizzando e aggiornando la classificazione sismica proposta nel 1998. La nuova classificazione è articolata in 4 zone, ciascuna contraddistinta da un diverso valore dell'accelerazione di picco orizzontale del suolo (ag) con probabilità di superamento del 10% in 50 anni (si veda la tabella 8.1), eliminando di fatto la presenza di aree del territorio classificate come non sismiche: in questo modo, a ciascuna area del territorio nazionale viene attribuito un differente livello di protezione sismica.

In ottemperanza all'art. 2 della OPCM 3274 e s.m.i. e secondo quanto disposto dal D.Lgs n. 112/1988 che attribuiva alle Regioni la competenza di classificare il territorio secondo criteri generali, la Regione Lombardia, con D.G.R. n. 14964 del 7 novembre 2003, ha provveduto ad aggiornare i propri elenchi delle zone sismiche.

L'O.P.C.M. 3274 e s.m.i. è entrata in vigore il 23 ottobre 2005 in coincidenza con quella delle nuove "*Norme Tecniche per le Costruzioni*" (D.M. 14 settembre 2005).

A far tempo da tale data è quindi vigente la classificazione sismica del territorio nazionale; per la Regione Lombardia la classificazione sismica è mostrata in figura 1:

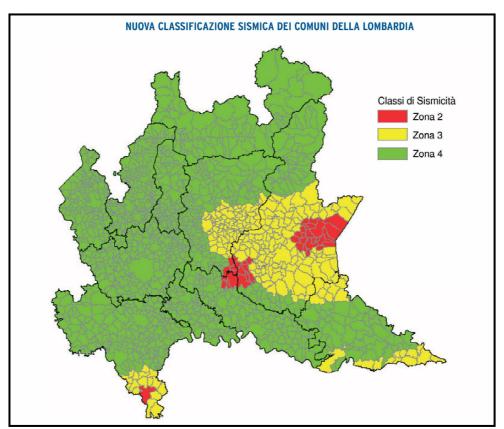


Figura 1: Classificazione sismica dei comuni della Lombardia in seguito all'Ordinanza 3274/2003 (D.G.R. n. 7/14964 del 7 novembre 2003).

Secondo la classificazione vigente, il territorio comunale di Offlaga appartiene alla **zona sismica 3** e risulta identificato da un valore di accelerazione massima orizzontale su suolo di riferimento con la probabilità del 10% di essere superato almeno una volta nei prossimi 50 anni (periodo di ritorno uguale a 475 anni) pari a 0.15g.

Zona	Valori di a _g
1	0,35 g
2	0,25 g
3	0,15 g
4	0,05 g

Tabella 1: valori di accelerazione orizzontale massima in funzione della zona sismica (D.M. 14.09.2005).

Sebbene la nuova classificazione preveda che ogni area del territorio nazionale sia classificata e identificata da una valore soglia di pericolosità sismica, si delineano alcune criticità:

- le Regioni sollecitate dalla O.P.C.M. 3274 hanno classificato il proprio territorio basandosi su precedenti studi di pericolosità sismica (sopratutto quelli prodotti nell'ambito del gruppo di lavoro del 1998) e hanno inserito i comuni non classificati in zona 4 senza valutare i livelli di accelerazione attesi;
- come disposto dalla O.P.C.M. 3274 e s.m.i. e dal D.M. 14.09.2005, la mappa di pericolosità sismica di riferimento a scala nazionale è stata aggiornata sulla base di nuovi dati utilizzando approcci leggermente differenti rispetto a quelli utilizzati per la redazione della mappa elaborata nel 1998 (INGV, 2006 OPCM 351/06); questo ha determinato, per alcune aree, la presenza di valori di ag diversi rispetto a quelli previsti dalla classe sismica di appartenenza.

Sulla base di quanto sopra riportato, è chiaro come la classificazione sismica del territorio nazionale derivi da una semplificazione nella valutazione dei livelli di pericolosità che, seppur necessaria per l'applicazione di una normativa di primo riferimento, deve essere considerata come punto di partenza per la realizzazione di studi sismici a maggior dettaglio e a minor scala (*microzonazione sismica*), sopratutto in fase di pianificazione urbanistica. In questo modo si può indirizzare lo sviluppo edificatorio e, in determinate situazioni, aumentare i livelli di protezione sismica previsti dalla normativa (livello minimo).

Le "Norme tecniche per le costruzioni" di cui al D.M. 14.01.2008 hanno introdotto un nuovo elemento metodologico nella stima della pericolosità sismica di base, la quale non risulta più associata alla zona sismica di appartenenza (criterio zona dipendente ex D.M. 14.09.2005) ma al valore di accelerazione massima orizzontale attesa su base probabilistica ad uno specifico sito (criterio sito dipendente).

Ciò ha permesso di superare la differenza tra valori di accelerazione previsti dagli studi di pericolosità sismica a scala nazionale e valori previsti dalla normativa antisismica per un suolo di riferimento. Esistono tuttavia alcune problematiche insiste nella distribuzione dei vertici della griglia di riferimento dei valori di accelerazione e l'ubicazione dell'area d'indagine.

Un'ulteriore novità, sempre introdotta dal D.M. 14.01.2008, è la formulazione dello spettro di risposta differente per ciascuna categoria di suolo di fondazione non accorpando più, come in precedenza, la categoria di suolo di fondazione B e C.

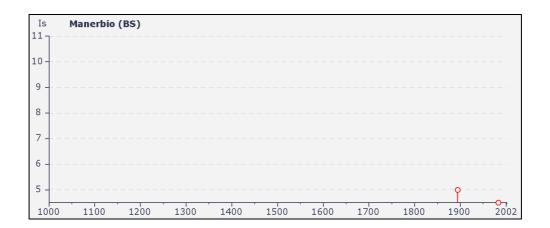
8.2 Descrizione della sismicità

L'analisi della sismicità, intesa come distribuzione spazio-temporale dei terremoti in una determinata area, costituisce il primo tassello per gli studi di valutazione della pericolosità sismica di base.

Trattandosi di modelli probabilistici, infatti, le caratteristiche sismotettoniche e le modalità di rilascio dell'energia sismica pregressa consentono la messa a punto di modelli previsionali dell'attività sismica attraverso una quantificazione dei livelli di accelerazione attesi.

Il territorio di Offlaga e un suo ragionevole intorno rientrano nella zona sismogenetica 907 (zonazione ZS9, figura 2), in prossimità del suo margine meridionale.

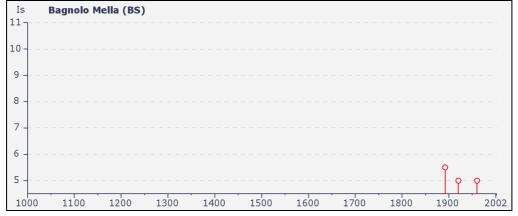
Dalla consultazione dei cataloghi sismici redatti dall'Istituto di Geofisica e Vulcanologia per gli studi di pericolosità risulta che:


- l'area comunale e quella bassa bresciana, nel loro complesso, sono caratterizzate da eventi sismici piuttosto sporadici e di intensità massima rilevata dell'ordine del V-VI grado della scala Mercalli;
- le località epicentrali per gli eventi che hanno prodotto i maggiori risentimenti/danni (osservazioni macrosismiche) provengono da zone vicine, corrispondenti al margine alpino, al Cremasco e all'Appennino Emiliano-Romagnolo.

Tale fatto è compatibile con la storia sismica locale così come deducibile dal catalogo DBMI04, il database utilizzato per la compilazione del Catalogo Parametrico dei Terremoti Italiani (CPTI04) aggiornato al maggio 2004 (a cura di M. Stucchi et al.), nel quale sono riportate le osservazioni macrosismiche relative a Manerbio, Bagnolo Mella e Verolanuova, i centro catalogati più vicini.

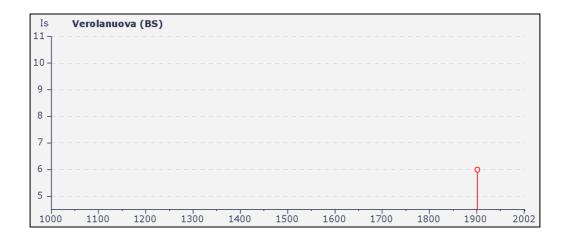
Storia sismica di Manerbio (BS)

Osservazioni disponibili: 3


Is	Anno Me Gi Or	Area epicentrale	Studio	nMDP	Io	Mw
5	1894 11 27	FRANCIACORTA	DOM	168	6-	4.95
					7	
4-	1983 11 09 16 29 52	Parmense	CFTI	835	6-	5.10
5					7	
NF	1995 10 29 13 00 28	BRESCIA-	BMIN	408	5-	4.57
		BERGAMO	G		6	

Storia sismica di Bagnolo Mella (BS)

Osservazioni disponibili: 7


Is	Anno Me Gi Or	Area epicentrale	Studio	nMDP	Io	Mw
5-6	1892 01 05	GARDA OCC.	DOM	100	6-7	4.96
3-4	1894 11 27	FRANCIACORTA	DOM	168	6-7	4.95
2	1898 03 04	CALESTANO	DOM	260	6-7	5.07
NF	1898 11 16	SALO'	DOM	23	5-6	4.63
					9-	
5	1920 09 07 05 55 40	Garfagnana	CFTI	638	10	6.48
5	1960 02 19 02 30	GIUDICARIE	DOM	50	6	4.83
			BMIN			
NF	1995 10 29 13 00 28	BRESCIA-BERGAMO	G	408	5-6	4.57

Storia sismica di Verolanuova (BS)

Osservazioni disponibili: 13

Is	Anno Me Gi Or	Area epicentrale	Studio	nMDP	Io	Mw
					9-	
4	1873 06 29 03 58	Bellunese	CFTI	199	10	6.33
3	1887 02 23 05 21 50	Liguria occidentale	CFTI	1515	9	6.29
F	1891 06 07 01 06 14	Valle d'Illasi	CFTI	403	8-9	5.71
3-4	1894 11 27	FRANCIACORTA	DOM	168	6-7	4.95
6	1901 10 30 14 49 58	Salo'	CFTI	191	8	5.67
2	1907 04 25 04 52	BOVOLONE	DOM	136	6	4.94
NF	1913 11 25 20 55	VAL DI TARO	DOM	73	5	4.85
NF	1913 12 07 01 28	NOVI LIGURE	DOM	56	5	4.72
2	1930 05 24 22 02	FIUMALBO	DOM	43	6	5.22
NF	1939 10 15 14 05	GARFAGNANA	DOM	62	6-7	5.20
4	1983 11 09 16 29 52	Parmense	CFTI	835	6-7	5.10
NF	1987 05 02 20 43 53	REGGIANO	DOM	802	6	5.05
NF	1995 10 29 13 00 28	BRESCIA-BERGAMO	BMING	408	5-6	4.57

A completamento delle osservazioni macrosismiche, nella figura 4 si mostra la distribuzione della sismicità "recente" rispetto al territorio in esame, riportando le localizzazioni epicentrali degli eventi registrati dalla rete Sismica Nazionale nell'intervallo di tempo compreso tra il 1981 ed il 2006 (Catalogo della sismicità italiana C.S. 1.0).

Anche in questo caso si evidenzia l'assenza di terremoti di una certa entità localizzati in prossimità del territorio di Offlaga, dimostrando come l'area sia caratterizzata da una modesta potenzialità sismica il cui aspetto principale risulta legato agli effetti risentiti e prodotti da terremoti di energia elevata (ML>4) avvenuti in aree epicentrali sensibilmente lontane; le osservazioni sismiche sono relative ad eventi provenienti dal margine alpino meridionale, dalla zona sismogenetica del Garda (tra cui il recente sisma di Salò del 2004 - non ancora elencato nel catalogo DBMI04 - che, considerata la distanza dal Comune di Offlaga, si è

manifestato a scala locale con risentimenti ben al di sotto della soglia del danno) o da quello settentrionale appenninico.

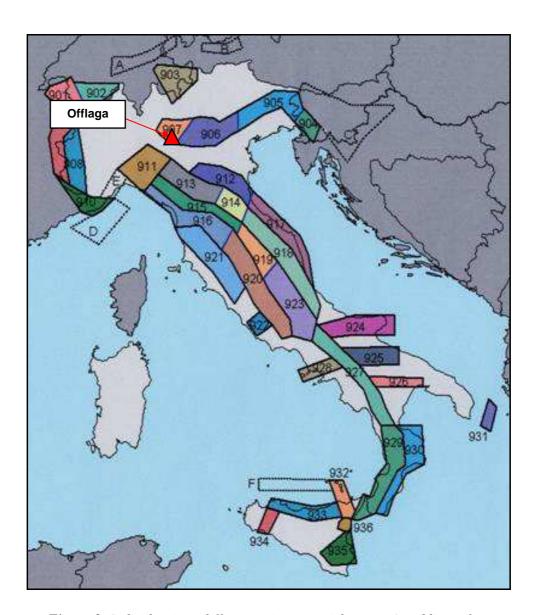


Figura 2: Individuazione delle zone sismogenetiche in cui è suddiviso il territorio nazionale - zonazione sismogenetica ZS9 (INGV 2004).

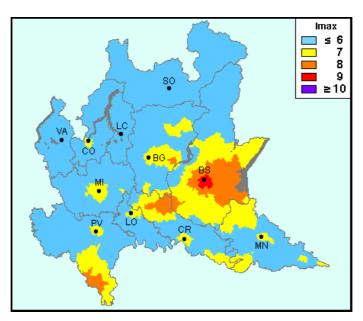


Figura 3: Carta della massima intensità macrosismica attesa in Lombardia (Moliniet et al., 1996).

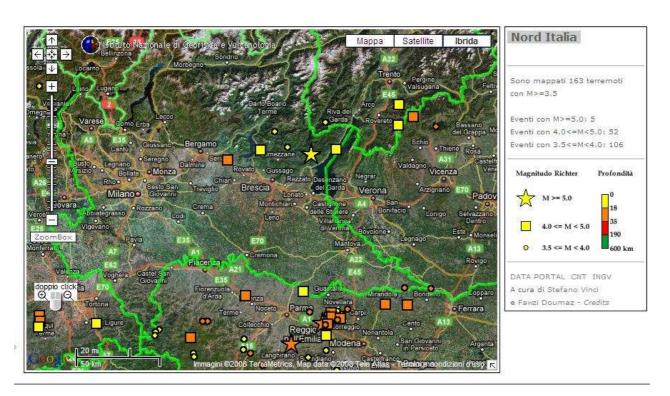


Figura 4: Ubicazione dei terremoti recenti – periodo 1981-2006 (INGV).

8.2 Pericolosità sismica

Come accennato nel capitolo precedente, in seguito all'emanazione della O.P.C.M. 3274/2003 e del D.M. 14.09.2005, è stata prodotta una nuova versione della Carta della Pericolosità Sismica del territorio nazionale (INGV anno 2004 e 2006).

La mappa riporta il valore dell'accelerazione orizzontale massima ag che ha la probabilità di essere superato almeno una volta nei prossimi 50 anni; tale valore di probabilità, che corrisponde ad un periodo di ritorno di 475 anni, è assunto come riferimento dalla normativa sismica vigente.

Nella figura seguente si riporta l'estratto della mappa di pericolosità sismica relativa alla Regione Lombardia, da cui si ricava che per il territorio di Offlaga il valore di ag atteso possa raggiungere valori prossimi **0.150 g**, ovvero pari a quello previsto dalla normativa per la zona sismica 3.

Figura 5: Mappa della pericolosità sismica della Regione Lombardia: si riportano i valori dell'accelerazione orizzontale massima attesa su suolo di riferimento come frazione di g (INGV anno 2006).

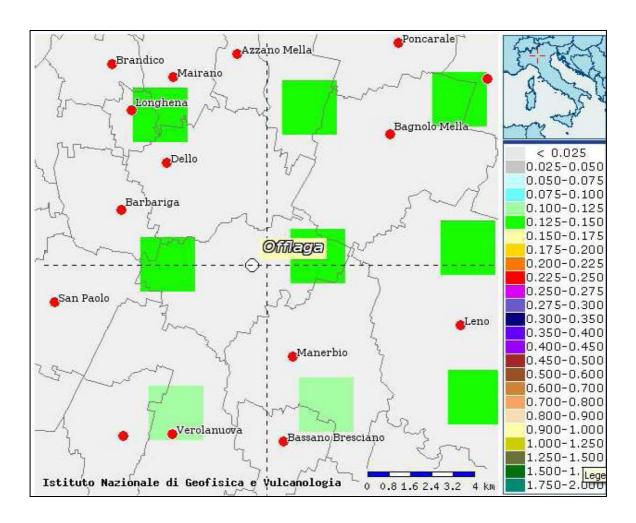


Figura 6: Mappa della pericolosità sismica relativa all'area di Offlaga.

Tuttavia, i soli valori di ag non sono sufficienti a descrivere le caratteristiche del moto atteso in un sito: le locali condizioni geologiche e geomorfologiche possono influenzare, in occasione di eventi sismici, la pericolosità sismica di base producendo effetti diversi da considerare nella valutazione generale della pericolosità sismica dell'area.

Tali effetti vengono distinti in funzione del comportamento dinamico dei terreni e dei materiali coinvolti; pertanto, gli studi finalizzati al riconoscimento delle aree potenzialmente pericolose dal punto di vista sismico sono basati, in primo luogo, sull'identificazione dei possibili effetti locali, distinguibili in due grandi gruppi: quelli di sito o di amplificazione sismica locale e quelli dovuti ad instabilità (o effetti cosismici).

Mentre gli effetti di instabilità interessano tutti i terreni che mostrano un comportamento instabile o potenzialmente tale nei confronti delle sollecitazioni sismiche (esempio i versanti, le frane quiescenti, ecc.), gli effetti di sito o di amplificazione sismica locale interessano tutti i

terreni che mostrano un comportamento stabile nei confronti delle sollecitazioni sismiche attese. Quest'ultimi sono rappresentati dall'insieme di modifiche in ampiezza, durata e contenuto in frequenza che un moto sismico (terremoto di riferimento), relativo ad una formazione rocciosa di base (bedrock), può subire, durante l'attraversamento degli strati di terreno sovrastanti il bedrock, a causa dell'interazione delle onde sismiche con le strutture locali.

Gli effetti di sito si distinguono in due gruppi che possono essere contemporaneamente presenti nella stessa area:

- rappresentate da morfologie superficiali più o meno articolate e da irregolarità topografiche in generale; tali condizioni favoriscono la focalizzazione delle onde sismiche in prossimità della cresta del rilievo a seguito di fenomeni di riflessione sulla superficie libera e di interazione fra il campo d'onda incidente e quello difratto. Se l'irregolarità topografica è rappresentata da substrato roccioso (bedrock) si verifica un puro effetto di amplificazione topografica mentre nel caso di rilievi costituiti da materiali non rocciosi, l'effetto amplificatorio è la risultante dell'interazione (difficilmente separabile) tra l'effetto topografico e quello litologico di seguito descritto;
- rappresentate da morfologie sepolte (bacini sedimentari, chiusure laterali, corpi lenticolari, eteropie ed interdigitazioni, gradini di faglia ecc.) e da particolari profili stratigrafici costituiti da litologie con determinate proprietà meccaniche. Tali condizioni possono generare esaltazione locale delle azioni sismiche trasmesse dal terreno, fenomeni di risonanza fra onda sismica incidente e modi di vibrare del terreno e fenomeni di doppia risonanza fra periodo fondamentale del moto sismico incidente e modi di vibrare del terreno e della sovrastruttura.

Al fine di individuare gli effetti di sito locali, la D.G.R. 8/7374/2008 prevede che, in fase di pianificazione urbanistica, venga affrontata una analisi della pericolosità sismica del territorio secondo livelli di approfondimento successivi.

Tale metodologia prevede tre livelli di approfondimento con grado di dettaglio crescente: i primi due livelli sono obbligatori in fase di pianificazione (con le opportune differenze in funzione della zona sismica di appartenenza), mentre il terzo è obbligatorio in fase di

progettazione; nella tabella seguente si riportano gli adempimenti in funzione della zona sismica di appartenenza:

	LIVELLI DI APPROFONDIMENTO E FASI DI APPLICAZIONE PSL= Pericolosità sismica locale			
	1° Livello Fase pianificatoria	2° Livello Fase pianificatoria	3° Livello Fase progettuale	
Zona sismica 2-3	obbligatorio	Nelle zone PSL Z3 e Z4 se interferenti con urbanizzato o urbanizzabile, ad esclusione delle aree già inedificabili	 Nelle aree indagate con il 2° livello quando Fa calcolato > valore soglia comunale Nelle zone PSL Z1, Z2 e Z5 	
Zona sismica 4	obbligatorio	Nelle zone PSL Z3 e Z4 solo per edifici strategici e rilevanti (elenco tipologico di cui al d.d.u.o. n. 19904/03)	 -Nelle aree indagate con il 2° livello quando Fa calcolato > valore soglia comunale; -Nelle zone PSL Z1, Z2 e Z5 per edifici strategici e rilevanti 	

Nel caso specifico del Comune di Offlaga, l'analisi territoriale (basata sui dati innanzi acquisiti) ha definito un generale scenario di Pericolosità Sismica Locale "Z4a - Zona di fondovalle con presenza di depositi alluvionali e/o fluvio-glaciali granulari e/o coesivi", esteso all'intero ambito comunale: l'effetto atteso nei confronti delle onde sismiche è quindi quello di una amplificazione litologica.

Sigla	SCENARIO DI PERICOLOSITA' SISMICA LOCALE	EFFETTI
Z1a	Zona caratterizzata da movimenti franosi attivi	
Z1b	Zona caratterizzata da movimenti franosi quiescenti	Instabilità
Z1c	Zona potenzialmente franosa o esposta a rischio di frana	
Z 2	Zone con terreni di fondazione particolarmente scadenti (riporti poco addensati, terreni granulari fini con falda superficiale)	Cedimenti e/o liquefazioni
Z3a	Zona di ciglio H > 10 m (scarpata con parete subverticale, bordo di cava, nicchia di distacco, orlo di terrazzo fluviale o di natura antropica)	Amplificazioni topografiche
Z3b	Zona di cresta rocciosa e/o cocuzzolo: appuntite - arrotondate	topografiche
Z4a	Zona di fondovalle con presenza di depositi alluvionali e/o fluvioglaciali granulari e/o coesivi.	Amplificazioni litologiche e
7.4h	Zona nedemontana di falda di detrito, conoide alluvionale e conoide	geometriche

	deltizio-lacustre	
Z4c	Zona morenica con presenza di depositi granulari e/o coesivi (compresi le coltri loessiche)	
Z4d	Zone con presenza di argille residuali e terre rosse di origine eluvio-	
	colluviale	

La carta della pericolosità sismica locale costituisce il riferimento per l'applicazione dei successivi livelli di approfondimento, come mostrato nella tabella seguente:

SCENARIO PERICOLOSITA' SISMICA LOCALE	Classe di Pericolosità Sismica	
Z1a	Н3	
Z1b	H2- livello di approfondimento 3°	
Z1c		
Z3a	II2 livelle di ammefendimente 2º	
Z3b	H2- livello di approfondimento 2°	
Z4a	II2 livelle di apprefendimente 2º	
Z4b	H2- livello di approfondimento 2°	
Z5	H2- livello di approfondimento 3°	

Considerato lo scenario di pericolosità sismica locale individuato sul territorio di Offlaga, in corrispondenza degli ambiti di trasformazione previsti nel Documento di Piano si è proceduto ad eseguire l'analisi di II livello, così come previsto dalla D.G.R. n. 8/7374/2008.

8.3 Valutazione degli effetti sismici di sito: analisi sismica di secondo livello

Come previsto dalla D.G.R. 8/7374/2008, per i comuni appartenenti alla Zona Sismica 3, in fase di pianificazione si deve procedere all'analisi dei fattori di amplificazione Fa (analisi di II° livello) per le zone PSL Z3 e Z4 interferenti con l'urbanizzato e/o con le aree di espansione urbanistica.

La procedura prevede il confronto del valore di Fa dell'area rispetto al valore di Fa caratteristico del territorio comunale in cui l'area è inserita: tale valore, detto "di soglia", è contenuto in un apposito elenco redatto dalla Regione Lombardia. Il risultato conduce a due situazioni: il valore di Fa è inferiore o uguale al valore di soglia oppure superiore. Nel primo caso la normativa antisismica (D.M. 14.01.2008) è sufficiente nel considerare i possibili effetti di amplificazione topografica/litologica del sito, consentendo l'applicazione dello spettro previsto dalla normativa; viceversa la normativa è insufficiente e devono essere effettuate analisi più approfondite (analisi sismica di 3° livello) in fase di progettazione strutturale (o, se adeguato, utilizzare lo spettro di norma caratteristico della categoria di suolo superiore). Si sottolinea che l'applicazione dello spettro previsto dalla normativa anche se mediamente sufficiente (Fa norma > Fa sito) potrebbe non cogliere alcuni aspetti principali, quali i processi di amplificazione molto marcati per specifici periodi: per questo si consiglia, soprattutto in fase di progettazione di edifici pubblici e con valenza strategico-rilevante, di effettuare comunque l'approfondimento sismico di 3° livello.

Per il comune di Offlaga i valori di Fa di soglia (stabiliti con D.G.R. 8/7374/2008), riferiti all'intervallo 0.1-0.5 s e 0.5-1.5 s per le diverse categorie di suolo soggette ad amplificazioni litologiche (B, C, D e E), sono i seguenti:

VALORI DI SOGLIA PER IL PERIODO COMPRESO TRA 0.1-0.5 s				
Comune	Suolo tipo B	Suolo tipo C	Suolo tipo D	Suolo tipo E
Offlaga	1.4	1.9	2.2	2.0

VALORI DI SOGLIA PER IL PERIODO COMPRESO TRA 0.5-1.5 s				
Comune	Suolo tipo B	Suolo tipo C	Suolo tipo D	Suolo tipo E
Offlaga	1.7	2.4	4.2	3.1

I due intervalli per i quali viene calcolato il valore di Fa derivano dal periodo proprio delle tipologie costruttive che costituiscono la maggior parte del patrimonio edilizio: in particolare l'intervallo tra 0.1-0.5 s si riferisce a strutture relativamente basse, regolari e rigide (massimo 5 piani), mentre l'intervallo 0.5-1.5 s si riferisce a strutture più alte e più flessibili (edifici con più di 5 piani). Il periodo proprio di un edificio può essere in prima analisi definito utilizzando la seguente l'espressione semplificata T_0 = $C_1H^{3/4}$ dove H è l'altezza dell'edificio in metri dal piano fondazionale mentre C1 è un fattore che dipende dal tipo di struttura portante dell'edifico (D.M. 14.01.200).

AMPLIFICAZIONE LITOLOGICA

Lo **scenario Z4a** identifica la possibilità che si verifichino effetti di amplificazione sismica legati alle caratteristiche lito-stratigrafiche e meccaniche dei terreni che costituiscono il sottosuolo (amplificazione di tipo litologico).

Per effettuare l'analisi di 2° livello con uno scenario Z4a è necessaria la conoscenza dei seguenti parametri:

- litologia prevalente dei materiali presenti nel sito;
- stratigrafia del sito;
- andamento delle Vs con la profondità e spessore e velocità di ciascuno strato.

Tali parametri posso essere ricavati con metodi differenti, ciascuno contraddistinto da un diverso grado di attendibilità, così come riportato nella tabella seguente.

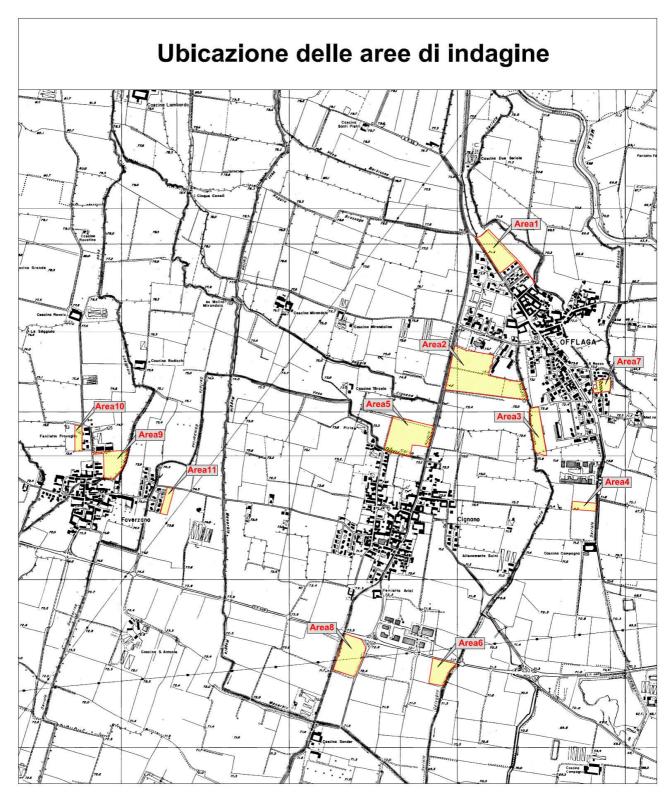

Dati	Attendibilità	Tipologia	
Litalogiai	Bassa	Da bibliografia e/o dati di zone limitrofe	
Litologici	Alta	Da prove di laboratorio e da prove in sito	
	Bassa	Da bibliografia e/o dati di zone limitrofe	
Stratigrafici (spessori)	Media	Da prove indirette (penetrometriche e/o geofisiche)	
(Alta	Da indagini dirette (sondaggi)	
	Bassa	Da bibliografia e/o dati di zone limitrofe	
Geofisici (Vs)	Media	Da prove indirette e relazioni empiriche	
Georgiei (+5)	Alta	Da prove dirette (sismica in foro o sismica superficiale)	

Tabella 2: Livelli di attendibilità per la stima del rischio sismico e delle amplificazioni di sito.

Per ciascun ambito di trasformazione previsto dal Documento di Piano del PGT si è proceduto all'esecuzione di un'apposita indagine geofisica, utilizzata per ricostruire l'andamento della velocità delle onde sismiche di taglio con la profondità (Vs-z): ciò consente di valutare le possibili modifiche della pericolosità sismica di base (accelerazione attesa su suolo rigido o suolo A) dovute alle proprietà litotecniche dei terreni che costituiscono l'area stessa (valutazione dei fattori di amplificazione Fa – analisi di II° livello come riportato in tabella 3a). Per i particolari relativi alla strumentazione utilizzata ed all'elaborazione delle prove si rimanda all'allegato 3.

	Tabella 3: Livelli di approfondimento e fasi di applicazione		
	1° Livello Fase pianificatoria	2° Livello Fase pianificatoria	3° Livello Fase progettuale
Zona sismica 2-3	obbligatorio	Nelle zone PSL Z3 e Z4 se interferenti con urbanizzato o urbanizzabile, ad esclusione delle aree già inedificabili	 -Nelle aree indagate con il 2° livello quando Fa calcolato > valore soglia comunale - Nelle zone PSL Z1, Z2 e Z5
Zona sismica 4	obbligatorio	Nelle zone PSL Z3 e Z4 solo per edifici strategici e rilevanti (elenco tipologico di cui al d.d.u.o. n.19904/03	-Nelle aree indagate con il 2° livello quando Fa calcolato > valore soglia comunale; -Nelle zone PSL Z1, Z2 e Z5 per edifici strategici e rilevanti

Di seguito si riportano i profili di velocità delle onde sismiche di taglio con la profondità ottenuti dall'esecuzione delle prove geofisiche.

Individuazione delle aree d'indagine (la numerazione si riferisce ai profili sismici delle figure seguenti).

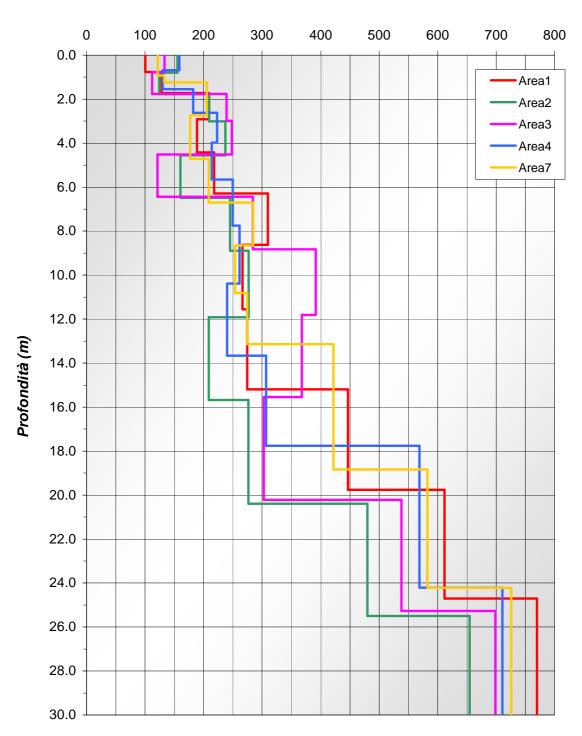


Figura 7: andamento con la profondità della velocità delle onde sismiche di taglio per le aree in prossimità del capoluogo (area 1, 2,3, 4 e 7).

Velocità onde S (m/sec)

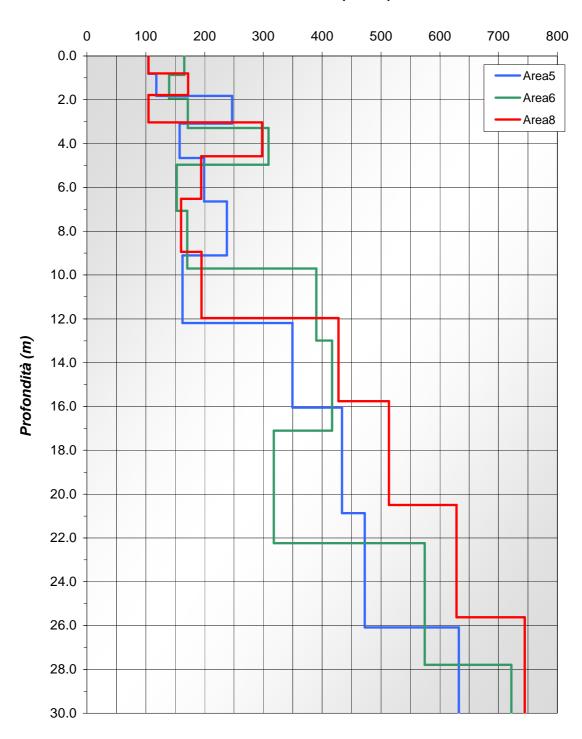


Figura 8: andamento con la profondità della velocità delle onde sismiche di taglio per le aree in prossimità della frazione di Cignano (area 5, 6 e 8).

Velocità onde S (m/sec)

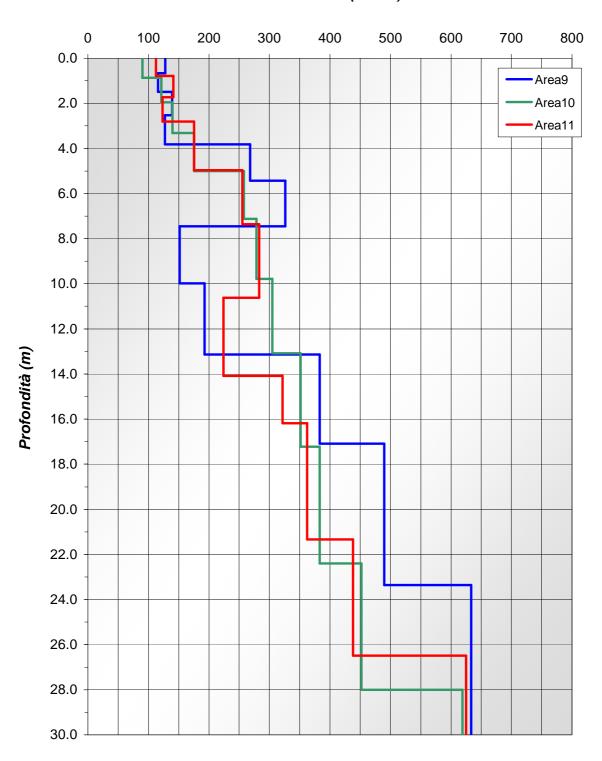


Figura 9: andamento con la profondità della velocità delle onde sismiche di taglio per le aree in prossimità della frazione di Faverzano (area 9, 10 e 11).

Stima degli effetti litologici

Secondo la procedura prevista per il 2° livello di approfondimento, il primo passo consiste nell'individuare la scheda litologica di riferimento che meglio approssima l'andamento del profilo Vs-z proprio del sito in esame (andamento Vs-z posto all'interno del "campo di validità" della scheda⁴).

All'interno della scheda stabilita, in funzione della profondità e della velocità delle onde S dello strato superficiale, è stata scelta la curva più appropriata per la valutazione del valore di Fa, calcolando successivamente il periodo proprio del sito con la seguente espressione:

$$T = \frac{4 \cdot \sum_{i=1}^{n} h_i}{\left(\frac{\sum_{i=1}^{n} Vs_i \cdot h_i}{\sum_{i=1}^{n} h_i}\right)}$$

dove h_i e Vs_i sono lo spessore e la velocità dello strato i-esimo del modello fino al bedrock sismico (strato con Vs > 800 m/s).

Non essendo stato rilevato direttamente, il bedrock sismico è stato ipotizzato assegnando un gradiente di tipo logaritmico delle velocità delle onde S con la profondità, desunto dai dati misurati nelle prove.

In questo modo, utilizzando l'equazione propria della curva stabilita, è stato possibile determinare il fattore di amplificazione Fa.

Sulla base dei modelli monodimensionali ricostruiti, si ottengono i seguenti risultati:

Area	Curva	Scheda	Periodo T _o	Fa (0.1-0.5)	Fa (0.5-1.5)
1	1	Limoso-argillosa 2	0.28 s	2.29	1.22
2	1	Limoso-sabbiosa 2	0.36 s	2.40	1.34

⁴ Allo stato attuale sussistono dei limiti di nell'applicazione dell'analisi di 2° livello derivante dalla messa a punto da parte della Regione Lombardia di una metodologia basata su schede di riferimento ricavate da un numero limitato di dati geofisici (andamento delle Vs con la profondità). Tale fattore può comportare che il profilo Vs-z relativo alla litologia che caratterizza il sito sia differente da quello previsto dalla stessa litologia nella scheda di riferimento. La procedura prevede che, nel caso in cui l'andamento delle Vs con la profondità non ricada nel campo di validità della scheda litologica corrispondente, sia utilizzata la scheda che presenta l'andamento delle Vs più simile a quello riscontrato nell'indagine.

3	1	Limoso-argillosa 2	0.31 s	2.34	1.24
4	1	Limoso-argillosa 2	0.30 s	2.33	1.23
5	1	Limoso-sabbiosa 2	0.34 s	2.39	1.32
6	1	Limoso-argillosa 2	0.32 s	2.37	1.25
7	1	Limoso-argillosa 2	0.28 s	2.29	1.22
8	1	Limoso-argillosa 2	0.29	2.30	1.22
9	1	Limoso-argillosa 2	0.32 s	2.36	1.25
10	1	Limoso-sabbiosa 2	0.36s	2.40	1.34
11	1	Limoso-sabbiosa 2	0.36	2.40	1.34

Tabella 4: valutazione dei fattori di amplificazione per le aree indagate.

Analisi dei dati e considerazioni

I valori di Fa proprio del sito sono stati confrontati con il valore Fa di soglia, differente per le diverse categorie di suolo.

Le categorie di suolo di fondazione, secondo l'OPCM 3274 e il DM 14.01.2008, risultano così identificate:

Categoria	Descrizione del profilo stratigrafico	Parametri		
		V _{s30} (m/s)	N_{SPT}	C_{u}
				(kPa)
A	$\frac{Ammassi\ rocciosi\ affioranti\ o\ terreni\ molto\ rigidi,}{\text{caratterizzati}\ da\ valori\ di\ V_{s30}\ superiori\ a\ 800\ m/s,}$ eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m	> 800	-	-
В	Rocce tenere e da grana grossa molto addensati o terreni a grana fina molto consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità	360-800	>50	>250

С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con al profondità	180-360	15-50	70-250
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con al profondità	<180	<15	<70
Е	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con Vs>800 m/s).			

in cui V_{s30} è la velocità media di propagazione entro 30 m di profondità delle onde di taglio, calcolata con la seguente espressione:

$$V_{s30} = \frac{30}{\sum_{i=1}^{n} H_i / V_i}$$

dove H_i e V_i indicano lo spessore (in m) e la velocità delle onde di taglio (per deformazioni di taglio γ < 10^{-6}) dello strato i-esimo, per un totale di N strati presenti nei 30 m più superficiali.

A partire dai profili Vs-profondità ricostruiti per le aree esaminate è stato possibile calcolare, con la formula sopra riportata, il valore di $V_{\rm s30}$ (i 30 m di profondità sono stati misurati convenzionalmente dal piano campagna), ottenendo i seguenti risultati:

Area	V _{s30} [m/s]	Categoria di suolo
1	318.05	С
2	270.95	С
3	301.38	С
4	313.39	С
5	272.55	С
6	292.39	С
7	324.20	С
8	290.70	С
9	275.90	С
10	279.18	С
11	274.77	С

e confrontando i valori del fattore di amplificazione del sito con quelli di soglia risulta che

$$\mathbf{Fa_{sito}} > \mathbf{Fa_{soglia}} \text{ per } 0.1 < T_o < 0.5 \text{ s}$$

 $\mathbf{Fa_{sito}} < \mathbf{Fa_{soglia}} \text{ per } 0.5 < T_o < 1.5 \text{ s}$

Ciò implica che la normativa antisismica (D.M. 14.01.2008), utilizzando una categoria di suolo tipo C, non è sufficiente a tenere in considerazione i possibili effetti di amplificazione litologica propri del sito per le strutture con periodo proprio compreso tra 0.1-0.5 s mentre risulta sufficiente per le strutture con periodo compreso tra 0.5 e 1.5 s. Considerata la sostanziale uniformità che caratterizzata il territorio è possibile ipotizzare che l'intera area comunale sia soggetta a fenomeni di amplificazione sismica locale tali da produrre valori di Fa di sito superiori a quello di soglia nell'intervallo tra 0.1 e 0.5s.

Tale considerazione supporta ulteriormente la necessità (già imposta dalla D.G.R. 8/7374/2008) che, per qualsiasi trasformazione d'uso del suolo legata alla realizzazione di nuovi edifici, il cui periodo proprio sia contenuto nell'intervallo tra 0.1 s e 0.5 s, venga

preventivamente valutata la pericolosità sismica locale attraverso il 2° livello di approfondimento (Allegato 5 della D.G.R. 8/7374); qualora venisse confermato il superamento del Fa di soglia, si dovrà procedere alla definizione dell'azione sismica di progetto attraverso l'analisi di 3° livello oppure utilizzare la categoria di suolo successiva fino alla verifica della condizione Fa_{sito} < Fa_{soglia}, così come previsto dalla DGR 8/7374.

9. CARTA DI SINTESI

La Carta di Sintesi (Tavola 7) costituisce il documento nel quale vengono riassunti tutti i fenomeni naturali ed antropici che costituiscono una limitazione geologica alle scelte urbanistiche: realizzata alla scala 1:10.000, l'elaborato contiene gli elementi più significativi emersi nella fase di analisi.

Nella cartografia di sintesi di Tavola 7 sono stati rappresentati i lineamenti più significativi dopo aver classificato l'intero territorio comunale per aree omogenee; in quest'ultima operazione, sono stati presi in considerazione i seguenti parametri:

- 1. *LITOLOGIA DEI TERRENI SUPERFICIALI* Per quanto riguarda l'aspetto litologico e geotecnico dei terreni (trattato in specifico capitolo), si ritiene che esso non costituisca un fattore limitante dal punto di vista urbanistico: la condizione sarà quella di verificare la natura litologica e geotecnica dei terreni di fondazione in caso di nuove strutture, ricorrendo ad adeguate indagini geognostiche in conformità a quanto previsto dal D.M. 14.01.2008 e s.m.i..
- 2. SOGGIACENZA DELLA PRIMA FALDA Vista la presenza di una falda a profondità ridotta, si rammenta come la generale saturazione dei terreni contribuisca ad un peggioramento delle loro caratteristiche geotecniche. Oltre a ciò, nel caso di realizzazione di nuovi edifici, dovrà essere considerata la massima quota raggiunta dalla falda, al fine di evitare interferenze dannose tra acqua sotterranea e strutture in progetto (fondazioni, piani interrati, ecc.). Saranno soggette a specifica limitazione le aree caratterizzate da falda sub-affiorante (soggiacenza media S<2 m) e quelle interessate da diffusi fenomeni sorgentizi.
- 3. VULNERABILITA' DELL'ACQUIFERO SUPERFICIALE Tale fattore costituisce un elemento distintivo, emerso nella fase di analisi e parzialmente vincolante nella fattibilità geologica delle azioni di piano. Si ribadisce come qualsiasi intervento che possa rappresentare un potenziale centro di pericolo per la risorsa idrica sotterranea debba richiedere un puntuale studio dei terreni in relazione alla locale vulnerabilità dei corpi acquiferi e al loro potenziale uso.

Tra le tematiche morfologiche, idrogeologiche e idrografiche sono stati rappresentate:

- le *scarpate* ai margini dei principali ripiani morfologici, sia perchè considerati elementi morfologici potenzialmente insidiosi per ogni intervento di edificazione o urbanizzazione, sia in quanto elementi costitutivi del paesaggio. Per quest'ultimo motivo, tutte le scarpate morfologiche di particolare significato geomorfologico (anche se di esili dimensioni) sono state assoggetta a specifica tutela.
- le depressioni morfologiche con acqua di falda affiorante e i principali fenomeni sorgentizi, in considerazione della vulnerabilità estremamente elevata della falda in corrispondenza del suo affioramento a piano campagna e del particolare ambiente che essi costituiscono;
- tutti i corpi idrici superficiali già assoggettati a specifico regolamento di polizia idraulica e i rilevati arginali del fiume Mella (in quanto elementi primari per la protezione del territorio dal rischio di esondazione);
- le fasce di esondazione del reticolo principale (già corrispondenti alle fasce A, B e C del P.A.I.).

10. CARTA DEI VINCOLI GEOLOGICI

Nella Tavola 8 sono stati cartografati i vincoli normativi di natura fisico-ambientale e geologica, limitanti nella fattibilità geologica delle azioni di piano.

In particolare, nella Tavola dei Vincoli sono stati cartografati:

- le <u>zone di tutela dei pozzi ad uso potabile-acquedottistico</u> per le quali la normativa vigente (D.Lgs. 152/06) fissa, secondo criteri geometrici, una fascia di tutela assoluta di 10 m che, nel caso specifico, coincide con quella di rispetto (ridotte sulla base di criteri idrogeologici con provvedimento emesso dalla Provincia di Brescia);
- il *reticolato idrografico* (definito sulla base della D.G.R. n. 7/7868 del 25.01.2002 e s.m.i.); le attività consentite e quelle vietate, così come le fasce di rispetto, sono normate da specifico regolamento di polizia idraulica (R.D. 523/1904 e s.m.i.);
- le <u>fasce A, B e C del Piano Stralcio per l'Assetto Idrogelogico (P.A.I.)</u> adottato dall'Autorità di Bacino del fiume Po con Deliberazione n. 18 del 26.04.2001 e approvato con D.P.C.M. del 24 maggio 2001. Le fasce fluviali e le disposizioni normative contenute nel P.A.I. integrano quelle del Piano Stralcio delle Fasce Fluviali, approvato con DPCM il 24/7/1998. Per suddette fasce è vigente specifica disciplina, meglio descritta nelle "Norme di Fattibilità Geologica".

Le fasce vengono così definite⁵:

- Fascia A di deflusso della piena: è costituita dalla porzione di alveo che è sede prevalente, per la piena di riferimento, del deflusso della corrente, ovvero che è costituita dall'insieme delle forme fluviali riattivabili durante gli stati di piena.
- Fascia B di esondazione per piena straordinaria (T<200 anni): esterna alla precedente, è costituita dalla porzione di alveo interessata da inondazione al verificarsi dell'evento di piena di riferimento. Con l'accumulo temporaneo in tale fascia di parte del volume di piena si attua la laminazione dell'onda di piena con riduzione delle portate di colmo. Il limite della fascia si estende fino al punto in cui le quote naturali del terreno sono superiori ai livelli idrici corrispondenti alla piena di riferimento ovvero sino alle</p>

⁵ da "Progetto di Piano stralcio per l'Assetto Idrogeologico (PAI) - Interventi sulla rete idrografica e sui versanti; adottato con deliberazione del Comitato Istituzionale n. 1 in data 11.05.1999; Secondo piano stralcio delle fasce fluviali: Relazione generale"

opere idrauliche di controllo delle inondazioni (argini o altre opere di contenimento), dimensionate per la stessa portata;

- Fascia C di inondazione per piena catastrofica: è costituita dalla porzione di territorio esterna alla precedente, può essere interessata da inondazione al verificarsi di eventi di piena più gravosi di quelli di riferimento.

La cartografia dei vincoli di natura geologica (Tavola 8), pertanto, riporta le fasce A, B e C, correggendo parzialmente la fascia B in funzione dell'arretramento di terrazzo subito in sponda sinistra del Mella a seguito di attività estrattiva. Tale operazione è avvenuta ai sensi dell'art. 27, comma 3 del P.A.I., secondo il quale "...gli strumenti di pianificazione provinciali e comunali possono fare coincidere i limiti delle Fasce A, B e C con elementi fisici rilevabili alla scala di maggior dettaglio della cartografia dei citati piani rispettandone comunque l'unitarietà".

11.Allegato 1 - TRINCEE ESPLORATIVE

T1:									
pro	profondità (m. da p.c.)			<u>Classificazione</u>	<u>Natura dei terreni</u>				
				<u>USCS</u>					
Da	0,00	a	0,30		Terreno vegetale				
Da	0,30	a	1,50	SM	Sabbia media con limo argilloso di colore nocciola				
Da 1,50 a 2,70			2,70	SW	Sabbia media ben assortita di colore azzurro				
falda	falda: - 2,40 m								

T2:									
pro	fondità	(m. c	da p.c.)	<u>Classificazione</u>	<u>Natura dei terreni</u>				
				<u>USCS</u>					
Da	0,00	a	0,30		Terreno vegetale				
Da	0,30	a	0,70	CL	Argilla limosa consistente plastica di colore				
					azzurra				
Da	0,70	a	1,20	SM	Sabbia fine limosa di colore azzurro				
Da	1,20	a	1,50	SW	Sabbia media ben assortita di colore grigio				
falda: - 1,50 m									

T3:									
pro	profondità (m. da p.c.)			<u>Classificazione</u>	<u>Natura dei terreni</u>				
				<u>USCS</u>					
Da	0,00	a	0,30		Terreno vegetale				
Da	0.30	a	1,10	SM	Sabbia molto fine limosa di colore nocciola				
Da 1,10 a 2,20			2,20	SW	Sabbia media ben assortita di colore grigio				
falda	falda:- 2,20 m								

T4:	T4:								
pro	<u>fondità</u>	(m. d	la p.c.)	<u>Classificazione</u> <u>USCS</u>	<u>Natura dei terreni</u>				
Da	0,00	a	0,30		Terreno vegetale				
Da	0,30	a	2,30	SP	Sabbia da fine a media ben assortita di colore nocciola				
falde	falda: - 1,90 m								

T5:									
pro	fondità	(m. a	la p.c.)	<u>Classificazione</u>	<u>Natura dei terreni</u>				
				<u>USCS</u>					
Da	0,00	a	0,30		Terreno vegetale				
Da	0,30	a	1,10	ML	Limo argilloso con sabbia molto fine di colore				
					nocciola				
Da	1,10	a	2,00	SW	Sabbia molto fine di colore nocciola				
falda	falda: - 1,70 m								

T6:	T6:									
pro	fondità	(m. a	<u>la p.c.)</u>	<u>Classificazione</u>	<u>Natura dei terreni</u>					
				<u>USCS</u>						
Da	0,00	a	0,30		Terreno vegetale					
Da 0,30 a 3,10				SW	Sabbia media ben assortita di colore nocciola					
falda	falda: assente									

T7:								
profondità (m. da p.c.)				Classificazione <u>USCS</u>	<u>Natura dei terreni</u>			
Da	0,00	a	0,30		Terreno vegetale			
Da	0,30	a	1,70	GW	Ghiaia sabbiosa con ciottoli centimetrici poligenici			
Da	1,70	a	3,00	CL	Argilla poco consistente plastica con lenti sabbiose di colore azzurro. Presenza di resti vegetali.			
falda: assente								

T8:					
profondità (m. da p.c.)			da p.c.)	Classificazione USCS	<u>Natura dei terreni</u>
Da	0,00	a	0,30		Terreno vegetale
Da	030	a	0,90	SM	Sabbia fine limosa di colore nocciola
Da	0,90	a	2,70	GW	Ghiaia sabbiosa con ciottoli centimetrici poligenici
falda:-2,50 m					

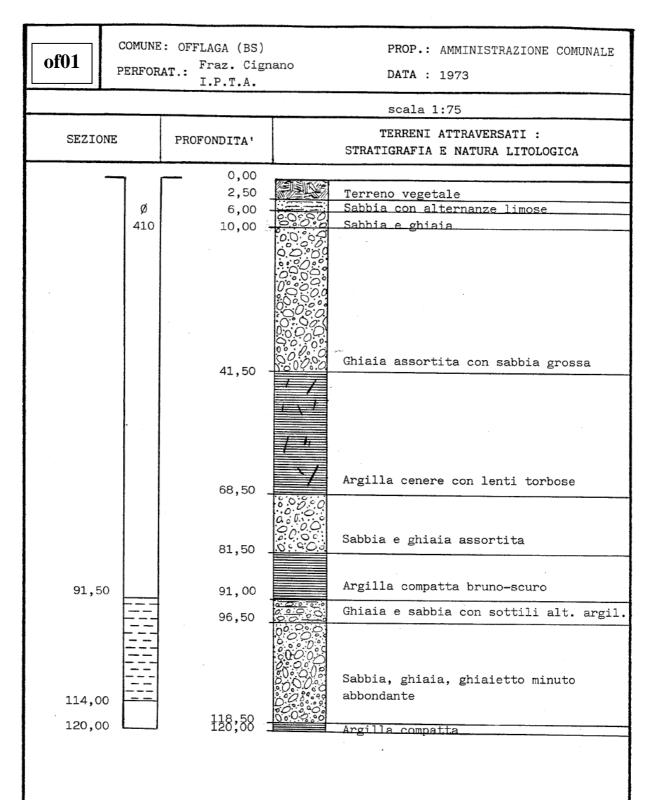
T9:					
proj	profondità (m. da p.c.)			<u>Classificazione</u>	<u>Natura dei terreni</u>
				<u>USCS</u>	
Da	0,00	a	0,30		Terreno vegetale
Da	0,30	a	0,70	ML	Limo argilloso consistente plastico di colore
					nocciola
Da	0,70	a	1,80	GW	Ghiaia con sabbia di colore nocciola
Da	1,80	a	2,20	CL	Argilla poco consistente plastica con lenti
					sabbiose di colore azzurro. Presenza di resti
					vegetali.
Da	2,20	a	2,40	CL	Argilla con ghiaia fine
Da	2,40	a	2,60	GW	Ghiaia con sabbia media di colore azzurro
falda	ı: - 2,60	m		_	

T10:						
profondità (m. da p.c.)			la p.c.)	<u>Classificazione</u>	<u>Natura dei terreni</u>	
		<u>USCS</u>				
Da	0,00	a	0,30		Terreno vegetale	
Da	0,30	a 0,80 ML		ML	Limo argilloso consistente plastico di colore	
					nocciola	
Da	0,80	a	1,20	SM	Sabbia molto fine limosa di colore nocciola	
Da	1,20	a	1,50	GW	Ghiaietto con sabbia di colore nocciola	
falda: - 1,50 m						

T11:	T11:					
profondità (m. da p.c.)			<u>la p.c.)</u>	<u>Classificazione</u>	<u>Natura dei terreni</u>	
				<u>USCS</u>		
Da	0,00	a	0,30		Terreno vegetale	
Da	Da 0,30 a 0,70 ML		ML	Limo argilloso consistente plastico di colore		
					nocciola	
Da	0,70	a	3,00	GW	Ghiaia fine con sabbia di colore nocciola	
falda	falda: assente					

T12	;				
profondità (m. da p.c.)			da p.c.)	Classificazione USCS	<u>Natura dei terreni</u>
Da	0,00	a	0,30		Terreno vegetale
Da	0,30	a	0,70	CL	Limo argilloso consistente plastico di colore nocciola
Da	0,70	a	1,60	SM	Sabbia molto fine limosa di colore nocciola
	a: - 1,40	1	1,00	J. SIVI	Bassia moto fine milosa di colore nocciola

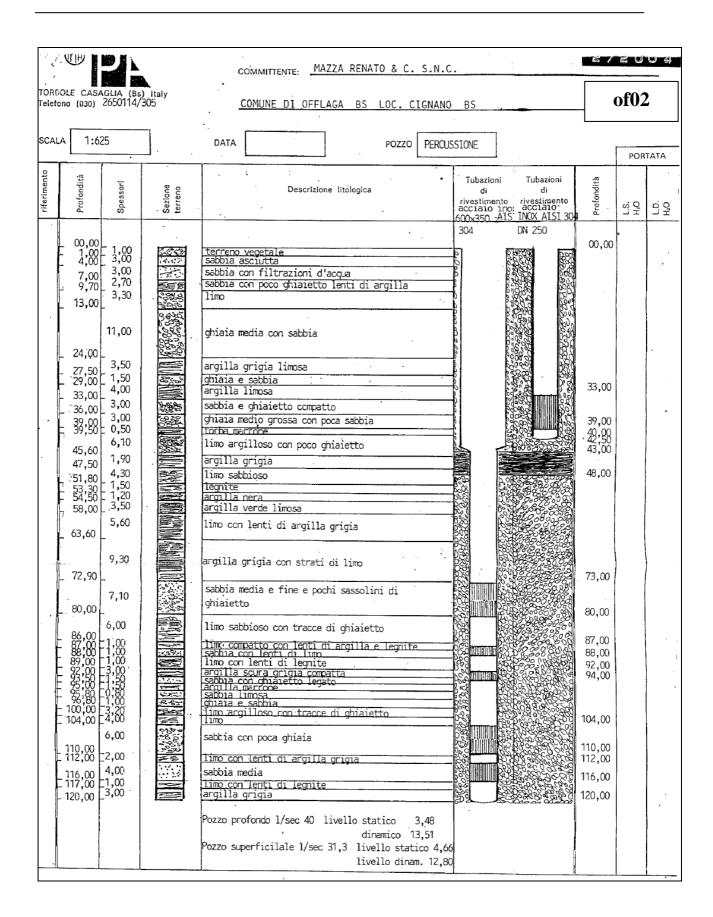
T13:	T13:						
profondità (m. da p.c.)			a p.c.)	Classificazione	<u>Natura dei terreni</u>		
				<u>USCS</u>			
Da	0,00	a	0,40		Terreno vegetale		
Da	0,40	a	0,70	GW	Ghiaia con sabbia media di colore azzurro		
Da	1,30	a	1,60	SW	Sabbia media ben assortita di colore grigio		
Fald	Falda. assente						


T14:						
profondità (m. da p.c.)			la p.c.)	<u>Classificazione</u>	<u>Natura dei terreni</u>	
		<u>USCS</u>				
Da	0,00	a	0,40		Terreno vegetale	
Da	0,40	a	1,40	ML	Limo con sabbia molto fine di colore grigio	
Da	1,40	a	1,80	SW	Sabbia molto fine di colore grigio	
Da	1,80	a	3,20	GW	Ghiaia con sabbia media di colore nocciola	
falda: assente						

12. Allegato 2 - ELENCO DEI POZZI CENSITI SUL TERRITORIO COMUNALE

CODICE	X	Y	USO	PROFONDITA'
of 01	1.586.695	5.025.541	acquedotto	120
of 02	1.586.660	5.025.516	acquedotto	195
of 03	1.585.080	5.025.138	irriguo	185
of 04	1.585.230	5.025.604	irriguo	94
of 05	1.584.849	5.025.230	irriguo	12
of 06	1.586.913	5.025.939	irriguo	100
of 07	1.587.474	5.025.355	irriguo	54
of 08	1.586.455	5.025.820	irriguo	24
of 09	1.585.431	5.027.029	irriguo	120
of 10	1.586.109	5.027.389	irriguo	90
of 11	1.586.765	5.026.540	zootecnico	30
of 12	1.590.723	5.027.188	irriguo	83
of 13	1.590.160	5.026.910	irriguo	61
of 14	1.589.580	5.026.236	zootecnico	61
of 15	1.588.490	5.025.783	zootecnico	80
of 18	1.585.110	5.024.711	zootecnico	50
of 19	1.586.491	5.027.726	irriguo	110
of 20	1.586.732	5.027.946	irriguo	
of 21	1.587.088	5.027.559	zootecnico	
of 22	1.587.502	5.027.639	irriguo	
of 23	1.588.297	5.027.521	zootecnico	
of 24	1.588.793	5.027.441	zootecnico	
of 25	1.588.503	5.027.119	zootecnico	

			1	
of 26	1.590.447	5.026.309	zootecnico	
of 27	1.589.857	5.025.987	zootecnico	
of 28	1.586.159	5.024.055	zootecnico	
of 29	1.584.800	5.026.560	zootecnico	
of 30	1.583.499	5.025.770	irriguo	
of 31	1.584.287	5.025.218	irriguo	
of 32	1.586.537	5.026.323	irriguo	
of 33	1.586.914	5.025.317	irriguo	
of 34	1.585.591	5.024.909	irriguo	
of 35	1.587.615	5.025.426	irriguo	
of 36	1.584.862	5.025.793	irriguo	60
of 36	1.587.248	5.026.783	zootecnico	60
of 37	1.584.839	5.025.916	zootecnico	50
of 38	1.584.726	5.026.293	zootecnico	60
of 39	1.587.290	5.024.705	irriguo	35
of 40	1.586.096	5.023.885	irriguo	70
of 41	1.585.506	5.026.015	irriguo	145
of 42	1.586.579	5.027.316	irriguo	101
of 43	1.586.195	5.027.358	irriguo	102
of 44	1.583.579	5.026.332	zootecnico	
of 45	1.584.304	5.026.850	potabile	70
of 46	1.584.330	5.026.951	zootecnico	70
of 47	1.584.119	5.026.543	zootecnico	


13.Allegato 3 - STRATIGRAFIE DEI POZZI ACQUEDOTTISTICI PRESENTI SUL TERRITORIO COMUNALE

PROFONDITA': m 120,00

TAGLI O FILTRI: Filtri del tipo a ponte

^{*} La stratigrafia é stata redatta esclusivamente sulla base delle informazioni fornite dall'impresa esecutrice.

14. Allegato 4 – INDAGINI GEOFISICHE IN SITO

Signa srl INDAGINI GEOFISICHE

Committente: dott. geol. Daguati Marco.

Località: Comune di Offlaga (Bs).

Indagine: Indagini geofisiche con la metodologia MASW.

RAPPORTO TECNICO

Codice	Codice documento: 29-10			Numero pagine: 28		
Α	05/05/10	EMISSIONE	DG	DG	DG	
Rev.	Data	Descrizione	Redatto	Controllato	Approvato	

SIGNA srl

Via A. Diaz, 22 – 26845 Codogno (Lo) Tel/Fax 035-806318 – Cell. 347-1445663 Cod.Fisc. e P.IVA 05388280967

www.signasrl.it; e-mail: info@signasrl.it

Indagini geofisiche con la metodologia MASW	Nome file	Offlaga PGT ind signiche doc
	Revisione	A (DG)
SIGNA srl – Indagini geofisiche	C. Documento	01
SICNA and Indomini montaighe	N. Commessa	29-10
	Data	05/05/10

INDICE GENERALE

1.	INTRODUZIONE ED INQUADRAMENTO GEOGRAFICO	3
2.	INDAGINE GEOFISICA MASW: DESCRIZIONE DEL METODO	
	E DELLA STRUMENTAZIONE UTILIZZATA	4
3	FLABORAZIONE DATI	12

FIGURE

ALLEGATO 1 – Ubicazione delle aree di indagine

	Data	05/05/10
SICNIA and Indonini manfisiaha	N. Commessa	29-10
SIGNA srl – Indagini geofisiche	C. Documento	01
Indogini gooficioho oon la motodologia MASW	Revisione	A (DG)
Indagini geofisiche con la metodologia MASW	Nome file	Offlaga_PGT_ind_sismiche.doc

1. INTRODUZIONE ED INQUADRAMENTO GEOGRAFICO

La presente relazione riporta le elaborazioni ed i risultati ottenuti dall'esecuzione di una campagna di indagini geofisiche consistita nella realizzazione di n. 11 profili sismici con la metodologia MASW effettuati in corrispondenza di altrettante aree situate nel territorio comunale di Offlaga (BS).

Nell'allegato 1 si riporta l'ubicazione delle aree all'interno delle quali sono state effettuate le prove sismiche tipo MASW.

La campagna di indagini è stata eseguita su incarico del dott. geol. Marco Daguati nell'ambito della predisposizione dello studio geologico comunale ai sensi della nuova Legge per il Governo del Territorio (D.G.R. n. 8/7374 recante "Criteri ed indirizzi per la definizione della componente geologica, idrogeologica e sismica del piano di governo del territorio in attuazione dell'art. 57 della L. R. n. 11 marzo 2005 n. 12).

Scopo delle indagini è quello di ricostruire, per le aree indagate, l'andamento della velocità delle onde sismiche di taglio con la profondità (Vs-z): i modelli sismici monodimensionali costituiscono infatti la base di partenza per la valutazione degli effetti di amplificazione sismica locale (analisi sismica di II° livello ai sensi dell'allegato 5 della DGR 8/7374).

Le particolari condizioni sito specifiche possono influenzare, in occasione di eventi sismici, la pericolosità sismica di base: tali effetti devono essere presi in considerazione nella valutazione generale della pericolosità sismica di un'area, soprattutto in fase pianificatoria.

Nei capitoli successivi verranno descritte le modalità d'esecuzione delle misure sperimentali e l'interpretazione geofisica delle stesse.

	Data	05/05/10
SICNA and Indomini manficials	N. Commessa	29-10
SIGNA srl – Indagini geofisiche	C. Documento	01
Indogini goofisiaha oon la matadalagia MASW	Revisione	A (DG)
Indagini geofisiche con la metodologia MASW	Nome file	Offlaga_PGT_ind_sismiche.doc

2. INDAGINE GEOFISICA MASW: DESCRIZIONE DEL METODO E DELLA STRUMENTAZIONE UTILIZZATA

La prova MASW, messa a punto nel 1999 da ricercatori del Kansas Geological Survey (Park et al., 1999) permette di determinare in modo dettagliato l'andamento della velocità delle onde sismiche di taglio (o onde S) in funzione della profondità attraverso lo studio della propagazione delle onde superficiali o di Rayleigh.

Il metodo di indagine MASW si distingue in "attivo" e "passivo" (Zywicki, 1999; Park e Miller, 2006; Roma, 2006):

- 1) Nel <u>"metodo attivo"</u> le onde superficiali sono prodotte da una sorgente impulsiva disposta a piano campagna e vengono registrate da uno stendimento lineare composto da numerosi ricevitori posti a breve distanza (distanza intergeofonica).
- 2) Nel "<u>metodo passivo</u>" lo stendimento presenta le stesse caratteristiche geometriche del metodo attivo ma i ricevitori non registrano le onde superficiali prodotte da una sorgente impulsiva, bensì il rumore di fondo (detto anche "microtremori") prodotto da sorgenti naturali (vento) e antropiche (traffico, attività industriali).

L'analisi delle onde superficiali è stata eseguita utilizzando la strumentazione classica per la prospezione sismica a rifrazione disposta sul terreno secondo un array lineare da 24 geofoni con spaziatura pari a 2.0 m per la tutte le prove MASW tranne che per le prove 3 e 10 (le configurazioni geometriche adottate sono state dettate dalle condizioni logistiche – disponibilità di spazio).

Per ottenere una buona risoluzione in termini di frequenza, oltre ad utilizzare geofoni da 4.5 Hz, è stato utilizzato un sismografo a 24 bit.

<u>Tutte le indagini MASW effettuate sono state effettuate con il solo metodo attivo</u>: la generazione delle onde superficiali è stata effettuata utilizzato come sistema di energizzazione una mazza di 8 Kg battente su piattello metallico. Per aumentare il rapporto segnale/rumore si è proceduto alla somma di più energizzazioni (processo di *stacking*).

Indagini geofisiche con la metodologia MASW

Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga PGT ind sismiche.doc

La sorgente è stata posta ad una distanza di 6 e 10 m dal primo geofono (*Optimum Field Parameters of an MASW Survey*", Park et al., 2005; Dal Moro, 2008).

Di seguito si riassumono le principali caratteristiche della strumentazione utilizzata ed i criteri di acquisizione della prova MASW attiva e passiva:

n°	Strumentazione	Caratteristiche	
1	Unità di acquisizione	sismografo GEOMETRICS "GEODE" a 24 bit	
24	Geofoni verticali	"Geospace" con f ₀ = 4.5 Hz	
2	Cavi sismici	L = 120 m	
1	Sorgente	Mazza battente su piattello metallico	

Figura 1: Strumentazione utilizzata per la prova MASW.

	Data	05/05/10
	N. Commessa	29-10
	C. Documento	01
	Revisione	A (DG)
	Nome file	Offlaga PGT ind sismiche.doc

Figura 2: Area1 - vista dello stendimento MASW1.

Figura 3: Area 2- vista dello stendimento MASW2.

	Data	05/05/10
	N. Commessa	29-10
	C. Documento	01
	Revisione	A (DG)
	Nome file	Offlaga PGT ind sismiche.doc

Figura 4: Area 3- vista dello stendimento MASW3.

Figura 5: Area 4- vista dello stendimento MASW4.

Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga PGT ind sismiche.doc

Figura 6: Area 5- vista dello stendimento MASW5.

Figura 7: Area 6- vista dello stendimento MASW6.

Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga PGT ind sismiche.doc

Figura 8: Area 7- vista dello stendimento MASW7.

Figura 9: Area 8- vista dello stendimento MASW8.

Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga_PGT_ind_sismiche.doc

Figura 10: Area 9- vista dello stendimento MASW9.

Figura 11: Area 10- vista dello stendimento MASW10.

Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga PGT ind sismiche.doc

Figura 12: Area 11- vista dello stendimento MASW11.

	Data	05/05/10
SICNA and Indomini manifesiaha	N. Commessa	29-10
SIGNA srl – Indagini geofisiche	C. Documento	01
Indogini goofisiaha oon la matadalagia MASW	Revisione	A (DG)
Indagini geofisiche con la metodologia MASW	Nome file	Offlaga_PGT_ind_sismiche.doc

3. ELABORAZIONE DATI

I dati sperimentali, acquisiti in formato SEG-2, sono stati trasferiti su PC e convertiti in un formato compatibile (KGS format file) per l'interpretazione attraverso l'utilizzo di uno specifico programma di elaborazione (**SurfSeis 2.0** della Kansas University).

L'analisi consiste nella trasformazione dei segnali registrati in uno spettro bidimensionale "phase velocity-frequency (c-f)" che analizza l'energia di propagazione delle onde superficiali lungo la linea sismica.

In questo grafico è possibile distinguere il "modo fondamentale" delle onde di superficie, in quanto le onde di Rayleigh presentano un carattere marcatamente dispersivo che le differenzia da altri tipi di onde (onde riflesse, onde rifratte, onde multiple).

Sullo spettro di frequenza viene eseguito un "picking" attribuendo ad un certo numero di punti una o più velocità di fase per un determinato numero di frequenze (vedi le curve di dispersione presentate in allegato).

Tali valori vengono successivamente riportati su un diagramma periodo-velocità di fase per l'analisi della curva di dispersione e l'ottimizzazione di un modello interpretativo.

Variando la geometria del modello di partenza ed i valori di velocità delle onde S si modifica automaticamente la curva calcolata di dispersione fino a conseguire un buon "fitting" con i valori sperimentali.

L'analisi dello spettro bidimensionale c-f consente in questo modo di ricostruire un modello sismico monodimensionale del sottosuolo, il quale risulta costituito dall'andamento della velocità delle onde di taglio Vs in funzione della profondità.

Dall'inversione delle curve di dispersione si ottengono i seguenti modelli medi di velocità delle onde sismiche di taglio con la profondità, ciascuno rappresentativo dell'area investigata.

Indagini	geofisiche	con la	metodologia	MASW
----------	------------	--------	-------------	------

Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga_PGT_ind_sismiche.doc

Shear-Wave Velocity Profile from Surface waves inversion

Velocità onde S (m/sec)

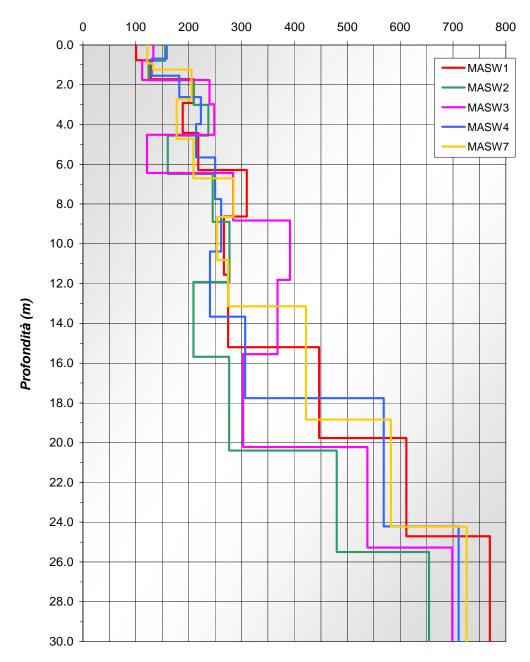


Figura 13: andamento con la profondità della velocità delle onde sismiche di taglio per le aree situate nel capoluogo Offlaga (area 1, 2, 3, 4 e 7).

Indagini geofisiche con la metodologia MASW

Data	05/05/10	
N. Commessa	29-10	
C. Documento	01	
Revisione	A (DG)	
Nome file	Offlaga_PGT_ind_sismiche.doc	

Shear-Wave Velocity Profile from Surface waves inversion

Velocità onde S (m/sec)

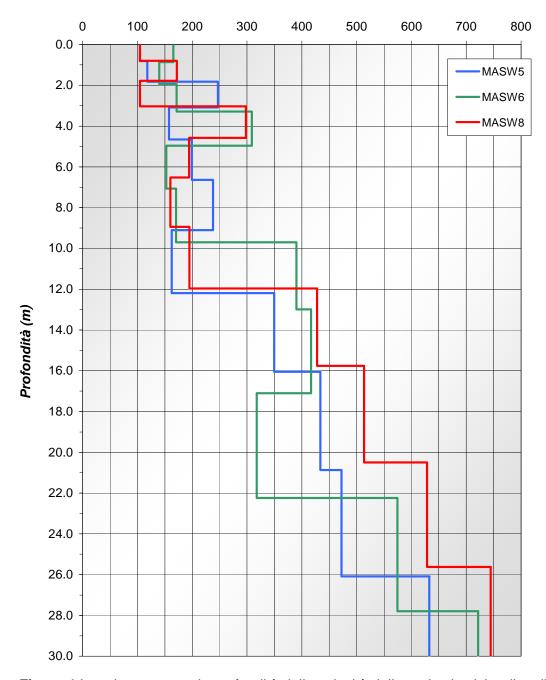


Figura 14: andamento con la profondità della velocità delle onde sismiche di taglio per le aree situate nella frazione Cignano (area 5, 6 e 8).

Indagini geofisiche con la metodologia MASW

Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga_PGT_ind_sismiche.doc

Shear-Wave Velocity Profile from Surface waves inversion

Velocità onde S (m/sec)

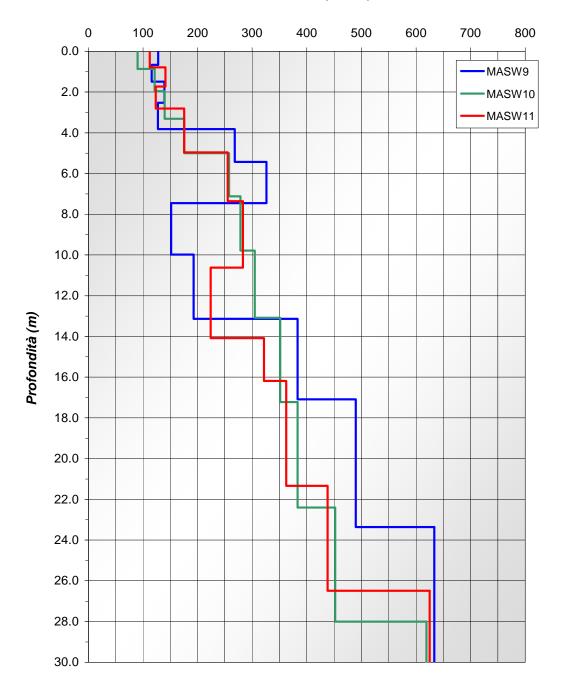
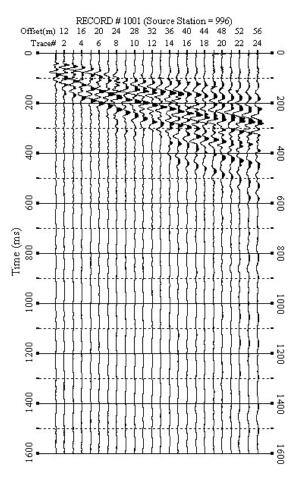
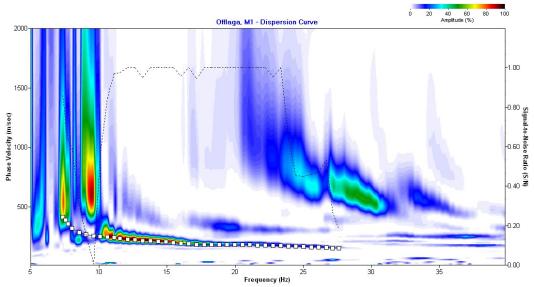


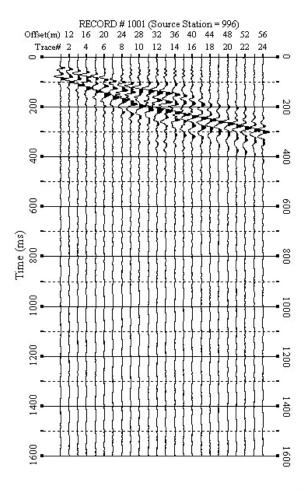
Figura 15: andamento con la profondità della velocità delle onde sismiche di taglio per le aree situate nella frazione Faverzano (area 9, 10 e 11).

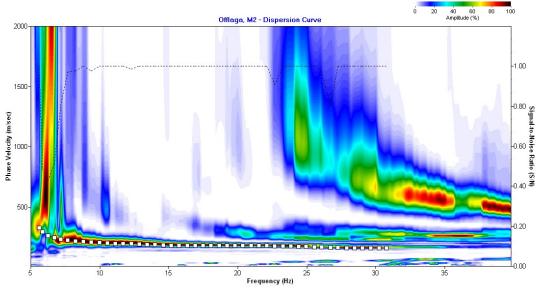

Pagina 15 di 28


	Data	05/05/10
SICNA and Indonini montainha	N. Commessa	29-10
SIGNA srl – Indagini geofisiche	C. Documento	01
Indogini gooficioho oon la motodologia MASW	Revisione	A (DG)
Indagini geofisiche con la metodologia MASW	Nome file	Offlaga_PGT_ind_sismiche.doc

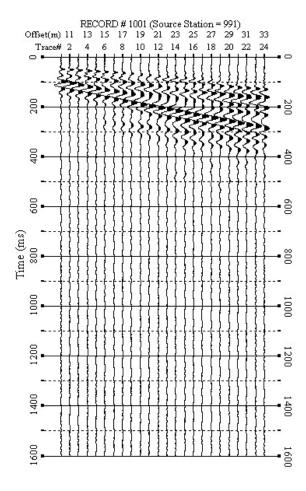
FIGURE

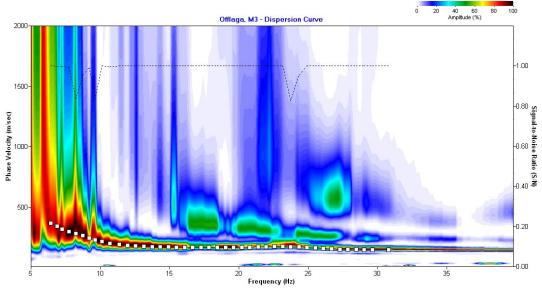
Indagini geofisiche con la metodologia MASW


Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga_PGT_ind_sismiche.doc

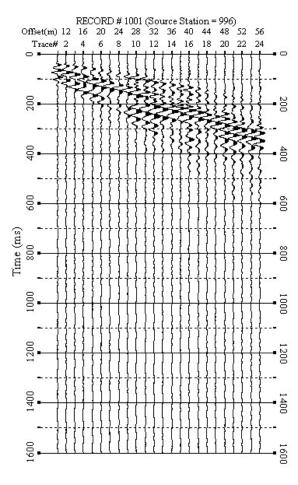


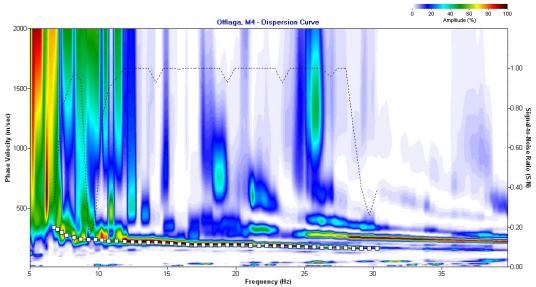
Indagini geofisiche con la metodologia MASW


Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga_PGT_ind_sismiche.doc

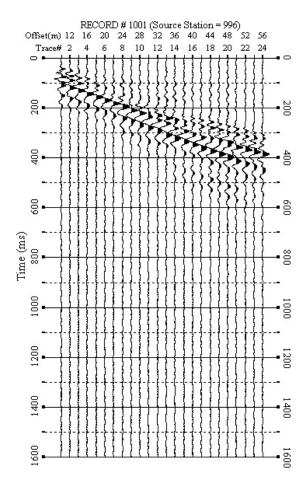


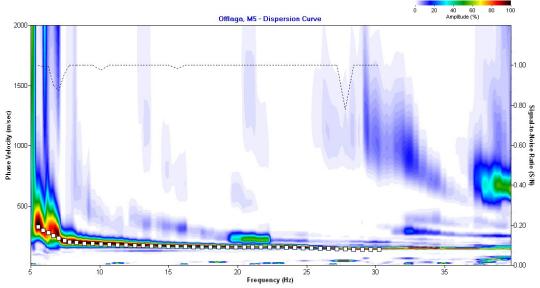
Indagini geofisiche con la metodologia MASW


Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga_PGT_ind_sismiche.doc

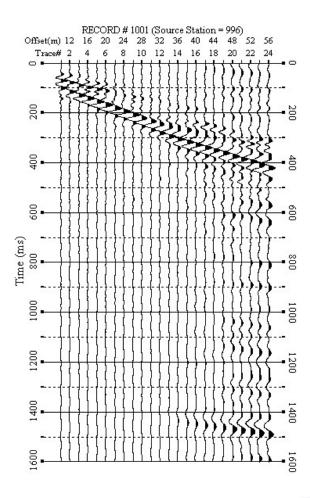


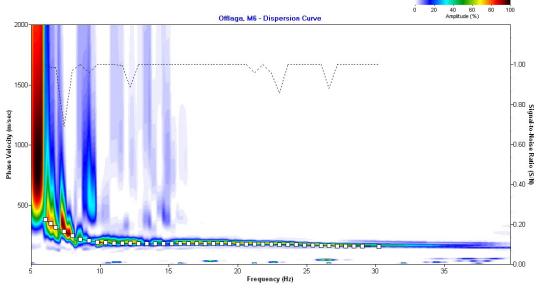
Indagini geofisiche con la metodologia MASW


Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga PGT ind sismiche.doc

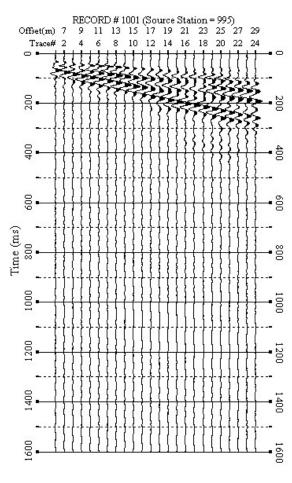


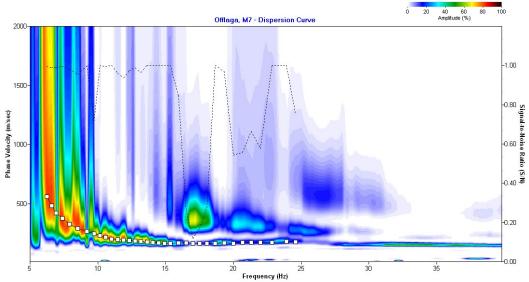
Indagini geofisiche con la metodologia MASW


Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga_PGT_ind_sismiche.doc



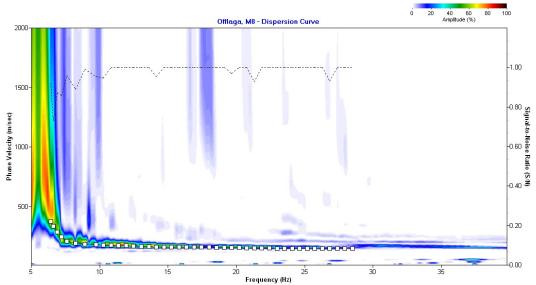
Indagini geofisiche con la metodologia MASW


Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga_PGT_ind_sismiche.doc

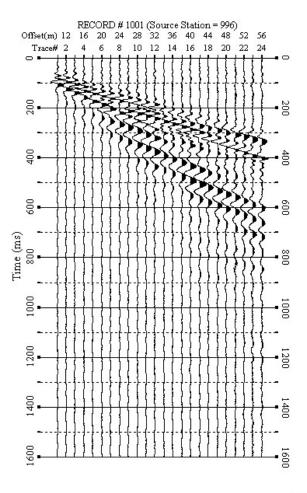


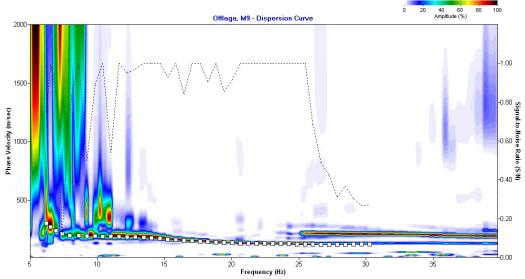
Indagini geofisiche con la metodologia MASW


Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga_PGT_ind_sismiche.doc

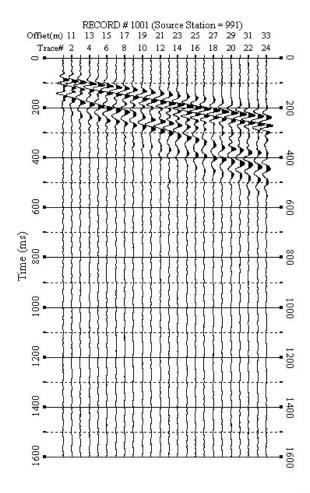


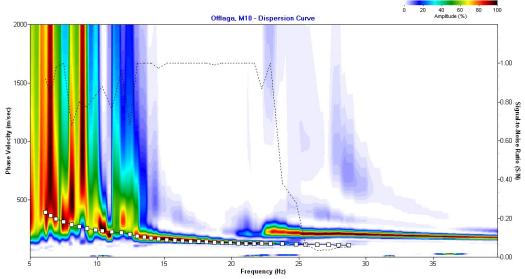
Indagini geofisiche con la metodologia MASW


Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga PGT ind sismiche.doc



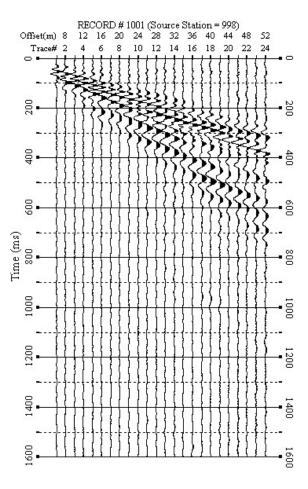
Indagini geofisiche con la metodologia MASW

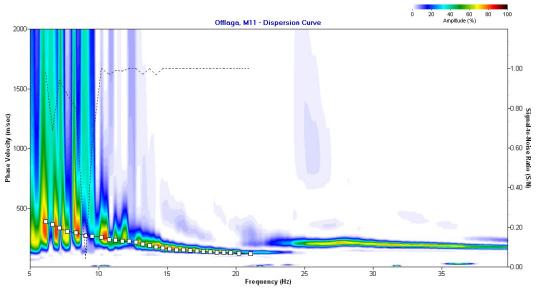

Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga PGT ind sismiche.doc



Indagini geofisiche con la metodologia MASW

Data	05/05/10
N. Commessa	29-10
C. Documento	01
Revisione	A (DG)
Nome file	Offlaga_PGT_ind_sismiche.doc


29-10
01
A (DG)


05/05/10

Data

Indagini geofisiche con la metodologia MASW

Nome file	Offlaga_PGT_ind_sismiche.doc
-----------	------------------------------

	Data	05/05/10
SICNIA on Indonini modicioho	N. Commessa	29-10
SIGNA srl – Indagini geofisiche	C. Documento	01
Indogini goofisiaha oon la matadalagia MASW	Revisione	A (DG)
Indagini geofisiche con la metodologia MASW	Nome file	Offlaga_PGT_ind_sismiche.doc

ALLEGATO 1

Ubicazione delle aree di indagine

